
R D-Ai45 869 AUTOMATING SOFTWARE DESIGN IIETRICS(IJ) CHARLES STARK 1/2
DRAPER LAB INC CAMBRIDGE MA P A SZtJLEWSKI ET AL.

AS FEB 84 CSDL-R-1662 RADC-TR-84-27 F30602-82-C-8138p UNCLASSIFIED F/G 92 NL

.% N

-. S.I"°I

• %*

ILI 12.0

1.JI25 14 .

°k

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAJ OF STAOAROS-1963-A

'I.

0

RADC-TR-84-27
Final Technical Report
February 1984

AUTOMATING SOFTWARE DESIGN METRICS

LuD
CD The Charles Stark Draper Laboratory, Inc.

400

Paul A. Szulewski, Nancy M. Sodano, Andrew J. RosnerE~ and J. S. DeWolf

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED Tj'~"~
SEP 1 8 1984 . 05 ROME AIR DEVELOPMENT CENTER

* Air Force Systems Command
Griffiss Air Force Base, NY 13441

.84 09 05 008

..........................

* 0

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

C-KO
RADC-TR-84-27 has been reviewed and is approved for publication.

APPROVED:

JOSEPH P. CAVANO

Project Engineer

APPROVED: 4"..

RAYOPND P. URTZ, JR.
Acting Technical Director
Command and Control Division

FOR THE COMMANDER: .0
JOHN A. RITZ
Acting Chief, Plans Office

* If your address has changed or if you wish to be removed from the RADC
* mailing list, or if the addressee is no longer employed by your organization,

- . . . -

please.......RAOD P.. . -.-....llass
.. a cr . .ing .li.t.

D n retrnd e C tontrol Division or no

on a sd te

._A

".. a. v- . b . .%. _%.. -. , , . . .°. . : _ a, . - .- .a a-.a

a"'.,'.

UNCLASSIFIED
SECURITY CLASSIFICATION OP THIS PAGE

REPORT DOCUMENTATION PAGE
I& REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

UNCLASSIFIED N/A

2. SECURITY CLASSIFICATION AUTHORITY 3. OISTRIBUTIONIAVAILABLITY OF REPORT

N/A Approved for public release; distribution
21. OECLASSIFICATION/OOWNGRADING SCHEDULE unl imited
N/A

4. PERFORMING ORGANIZATION REPORT NUMBERIS) S. MONITORING ORGANIZATION REPORT NUMBER(S)

CSDL-R- 1662RADC-TR-84-27

Ga. NAME OF PERFORMING ORGANIZATION [b. OFFICE SYMBOL 7. NAME OP MONITORING ORGANIZATION

The Charles Stark Draper (If appilcs%°""
Laboratory, Inc. Rome Air Development Center (COFE)

6c. ADDRESS jCity. Stte nd ZIP Cade) Mb ADDRESS (City. S4tt ad ZIP Code) 0
'I% 555 Technology Square Griffiss AFB Y 13441%

Cambridge MIA 02139 '

B" NAME OP FUNOING/SPONSORING lb. OFFICE SYMBOL B. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If appUCe)bt"

% Rome Air Development Center COEE F30602-82-C-0130

SC. ADORESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NO.

PROGRAM PROJECT TASK WORK UNIT
I IE ME NT NO. NO. NO. NO. %

Criffiss AFB NY 13441 62702F 5581 20 42

11. TI TLE (include Secuity C0auaaficutionu)%
AUTOM ATINC SOFTWARE DESIGN METRICS

12. PERSONAL AUTHOR(S)

Paul A. Szulewski, Nancy M. Sodano, Andrew J. Rosner, J. B. DeTTolf
13& TYPE OF REPORT 13b6 TIME COVERED 14. DATE OF REPORT . Me.. Day) 15. PAGE COUNT %.

Final FROM Sep82 TO Sep83 February 1984 164
16. SUPPLEMENTARY NOTATION,,.. , .

17. COSATICOES t& SUBJECT TERMS "Continue on 'wuiee if necesary an identify by block pumbert.
IEL GRoup SUB.GR. Software Design Metrics Software Quality 'feasurements

09 02 Software Science Automated Design Tools

19. ABSTRACT lContinue oI ,yietru if n.cer n ld ideni~gfy by blac nubr

.)The Rome Air Development Center has developed the Software Quality Framework as a means to

specify software quality goals and measure software quality. Much of the work to date has<I., focused on metrics applicable to software code. This report describes an effort undertaken ,..

to measure the quality of software products earlier in the software development life cycle,
* during the design phase, and to automate the capture of metric data from design media.'

'etrics of software quality, primarily those related to the criterion simplicity (or con-
,ersely, complexity), were reviewed. This review includes those metrics previously devel-
oppd in the Software Quality Framework. Two metrics, Halstead's Software Science and

a :McCabe's Cyclomatic Complexity were chosen for their amenability to measurement during %ai
design and their potenial for automation. Two design media were used: Design Aids for

"O Real-Time Systems (DARTS), an ex erimental automated design tool developed at the Charles S
Stark Draper Laboratory; and Ada as a program design language.(PDL.).

2,. OISTRIBUTIONIAVAIL.AIITY OP ABSTRACT 21. ABSTRACT SECURITY LASSIP ICATION

UNCLASSIPI/UNLIMITE(SAME AS RPT. 0 OTic USERS o UNCLASSIFF \
22. NAME OF RESPONSIBLE INDIVIDUAL 22b, TELEPHONE NUMBER 22c. OFFICE SYMBOL h

(include A Cmde
-

, Joseph P. Cavano (315)330-7834 PADC/COFr

0 FORM 1473, 83 APR EDITION Of- I JAN 73 IS OBSOLETE. MICTASS I FT ED
SECURITY CLAS IFICATION OF THIS PAGE '-

%~~~ %*% %%
% S % ,%

a-.'

a. '.%

a a a , a . 'aca *~~.
". ;",". L " ,,.'."%"".. "". "'.e i;"..; "" . ".; J''''l ;""" z" ",*,", ".- ". " " * ": e .-. ":- :. . . " • ", ". " ,%,:"

%.2%

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

Automatic measurement of the Halstead and McCabe metrics was implemented as an analysis

capability of DARTS. Software designs were encoded into DARTS and subsequently measured
for quality and other measurable parameters. These experiments provide some evidence that
early measurement can supply both static quality assessment and project planning data which
is useful information for managers and designers alike. The Halstead metric was also %-.:

manually applied to a textbook design represented in an Ada PDL. This experiment showed -
that it is feasible to use Ada as a design medium, that Halstead metric data can be cap- * .
tured from an Ada Design, and that if an automated Ada PDL is used, there is potential for
automated measurement.

Finally, a methodology was proposed for using design metrics in support of an integrated
software development environment. This methodology was shown to be capable of providing .-......
early measures of software quality, and other planning estimates like delivered source 0

- instructions, costs, and schedules.

- .- 'V....

Ada is a registered trademark of the US Department of Defense (AJPO).
'%" "-' ,* 7

%

% %
%" % %

0..6..a. •,a•

, UCLASI I E*', ',a

.K aEI~iY€.S IlCTO @TlsPG

. '."
,'. .," ',.... ,,'.,-,-,. ,, .-. , • ,. .. , .. , ,,. , - .-. • ,,. • •.. , ,.'

TABLE OF CONTENTS

Section Page

1.0 INTRODUCTION 1.
1.1 Report Organization 1 ,I.
1.2 Historical Perspective 2

% 1.2.1 The Software Quality Framework 2.....-.....
1.2.2 Metrics of Software Quality 4
1.2.3 Automated Software Design Tools 5
1.2.3.1 Software Design Media.50
1.2.3.2 Automated Program Design Languages 6--
1.2.3.3 Automated Requirements and Design Languages I. 6
1.2.3.4 Design Aids for Real-Time Systems (DARTS) 7...-.

1.3 Project Overview 7
1.3.1 Research Objectives 8
1.3.2 Technical Approach 8

2.0 On The Development, Use, and Automation of Design Metrics 11
2.1 A Context for Metrics in The Development Process 1 11

2.1.1 A Software Development Process Model 12
2.1.2 The Software Development Life Cycle 12
2.1.3 Using Metrics During Software Development 14%

2.2 Selecting Metrics for Automatic Measurement During Design . 5
2.2.1 A Survey of Recent Metrics Literature 16
2.2.2 McCabe's Cyclomatic Complexity Metric 16 X

2.2.2.1 Cyclomatic Complexity Metric Definition 16
2.2.3 Halstead's Software Science Metrics 1.18 -e

2.2.3.1 Software Science Definitions 18 '
2.2.3.2 A Generalized Halstead Technique 19
2.2.3.3 Interpreting Software Science Metrics I.............. 20

2.2.4 Distinguishing Metrics by Phase and Automation Potential . 21
2.2.5 Evaluation of Candidate Metrics 26 -

2.2.5.1 Notes on Table 5 27
2.2.6 Metric Automation Potential Summary 36

2.3 Design Metrics and DARTS 37
2.3.1 McCabe's Cyclomatic Complexity Metric 37

2.3.1.1 Requirements 37
2.3.1.2 The DARTS Implementation of McCabe's Metric 38

2.3.2 Halstead's Software Science Metrics 3
2.3.2.1 Requirements 43
2.3.2.2 The DARTS Implementation of Halstead's Metrics44

2.4 Using The DARTS Design Metrics 45
2.4.1 Simple Examples I.. ... %

Contents i 0

.
d,,

V.. . %..

"--,

0::I
I % %

% ~ % . % % -.?-- ,.. r. . le % e.

2.4.1.1 CACM Example 14a... 45
2.4.1.2 CACK Example 14b.. 46
2.4.1.3 CACM Example 15a... 48
2.4.1.4 CACM Example 15b.. 50
2.4.1.5 Analysis of the Simple Examples Experiment.... 52

2.4.2 Complex Examples.................. 5
2.4.2.1 The Experiment Controller Example..............54

2.4.2.2 Metric Analysis of the Experiment Controller Designs . 54
2.5 Design Metrics and Ada.. 56%

2.5.1 Motivation 67 .

2.5.2 The Object-Oriented Design Methodology67
2.5.3 Using Ada as a PDL with the Object-Oriented Design Method 68

2.5.3.1 Architectural Design 71
2.5.3.2 Detailed Design.... 72

2.5.4 Using Halstead Metrics on Ada............. 72
2.5.4.1 The Counting Method............. 72 "e
2.5.4.2 Possible Adjustments to the Counting Method........7
2.5.4.3 Automation Potential 75
2.5.4.4 Example... 75
2.5.4.5 Analysis of the Counting Leaves Example.... 76

*3.0 Using Design Metrics, A Supporting Methodology... 1030
3.1 Projecting Project Costs and Schedules... 103 j

3.1.1 An Algorithnic Estimation Method... 104 j

3.1.2 An Example 107 .*%

3.2 Use of Design Metrics.............. 108

4.0 Conclusions..................... 1

5.0 Directions for Further Research... 113

Appendix Page

Appendix A. GLOSSARY OF RELATED ACRONYMS AND TERMS 115

Appendix B. Example Darts Trees......................117

Appendix C. DARTS PL/I Halstead Modules... 123
C.1 Design Trees 123

C.1.1 Node 9 123
.)C.1.2 Node 9.1 123
*C.1.3 Node 9.1.1..........................126

C.1.4 Node 9.1.1.1............................126
C-1.5 Node 9.1.1.2..................... 2
C.1.6 Node 9.1.1.3..........................127
C.1.7 Node 9.2.......................

*ii Automating Software Design Metrics0

%%

... d*e Pr
.. -....

I.

C..1 Nods-.,~ . 2

a.'.
. ,

C.1.8 Node 9.2.1 128
C.1.9 Node 9.2.2 128
C.1.10 Node 9.2.3 . 129

•-.-c.1.,2 Node 9.2.3,.2.. 12 9
e C.1.13 Node 9.2.4 129

C.1.14 Node 9.3 130

Appendix D. DARTS PL/I McCabe Nodules 131
D.1 Design Trees 131

D.1.1 Node 2 131
D.1.2 Node 2.10 133
D.1.3 Node 2.20 133
D.1.4 Node 2.20.10 134
D.1.5 Node 2.20.10.10. 134
D.1.6 Node 2.20.10.20 135 % -%
D.1.7 Node 2.20.10.40 135
D.1.8 Node 2.20.20135
D, 0.1.9 Node 2.20.30.. 136
D.1.10 Node 2.20.30.10136

_X D.1.11 Node 2.30 137
D.1.12 Node 2.40 137
D.1.13 Node 2.50...........................138

Appendix E. DARTS Data-Flow Tables for Experiment Controller Example 139

List of References 145

Bibliography 149 S
a . • -. ,

a.,
..-

* Di, _ - -,.

-Avail i.,tv Codes

Dist Spocial %

eo° " IContents i

.N A a... ,1-. +4
J" "d' '

" ' i,

... ~ ,

% %
,', . ,pS. M .2_.-

LIST OF ILLUSTRKTIONS%

Figure Page

1. The Software Quality Framework...... 4
2. DARTS Tree for Coordinator 39
3. DARTS Tree for Iterator................. 39
4. DARTS Tree for Selector................. 40

5. DARTS Tree for Sequencer 40
6. FL/I Code and Gordon's Metric Data - CACM 14a.............46 4
7. FL/I Code and Gordon's Metric Data - CACK 14b.............48 .

8. PL/I Code and Gordon!; Metric Data - CACM 15a...... 50
9. PL/I Code and Gordon's Metric Data - CACM 15b.............52
10. Experiment Controller System 56
11. Experiment Controller - Design 1 57
12. Experiment Controller - Design 2 60
13. English Language Problem Statement for Counting Leaves........77
14. Ada Architectural Design Specification for Counting Leaves. . 78
15. Ada Solution Statement for Counting Leaves........ 79

%16. Ada Detailed Design for Counting Leaves - COUNTER PACKAGE.......80
-~17. CACM Example 14a, DARTS Representation..... 118 .

18. CACM Example 14b, DARTS Representation....... 119
19. CACM Example 15a, DARTS Representation..... 120
20. CACK Example 15b, DARTS Representation...... 121

*21. Design Tree for Halstead Metric....... 124%

22. Design Tree for McCabe Metric 132

il

% %t

% %
.5%

7 -

" LIST OF TABLES

Table Page -

' 1. Summary of Phases, Products, and Metrics 15
2. Halstead's Software Science Metrics. 20
3. MIL-STD-SDS Top Level Design Document Information in DARTS 24 1
4 3. MIL-STD-SDS Detailed Design Document Information in DARTS 25
5. Metric Applicability and Automatability28 .
6. Automation Summary for McCall Metrics 36

' 7. DARTS Software Science Operator Primitives. 44
8. DARTS Halstead and McCabe Analysis - CACM 14a 47
9. DARTS Halstead and McCabe Analysis - CACM 14b 49

10. DARTS Halstead and McCabe Analysis - CACM 15a 5.....--51
11. DARTS Halstead and McCabe Analysis - CACM 15D 53
12. Requirements for the Experiment Controller55 ._.

13. DARTS Metrics Summary - Design 1 65 V,
14. DARTS Metrics Summary - Design 2 66
15. MIL-STD SDS Top Level Design Document Information in Ada. . . . 69
16. MIL-STD SDS Detailed Design Document Information in Ada. 70
17. Operators and Operands in English Statement for Counting Leaves . 88
18. Halstead Metric Values for English Statement for Counting Leaves . 89
19. Halstead Metric Values for English Statement Adjusted for Redundancy 90

20. Operators and Operands in Architectural Design for Counting Leaves. 91
21. Halstead Metric Values for Architectural Design for Counting Leaves 94
22. Operators and Operands in Detailed Design for Counting Leaves . 95
23. Halstead Metric Values for Detailed Design for Counting Leaves . 101
24. Length Estimates for Design One 108
25. Length Estimates for Design Two 109
26. Data-Flow Table - Design 1 140
27. Data-Flow Table - Design 2 142

7 0

List of Tables Vii ""'

%

-O

S. w

S-"'.-..':- - ". .' -' ' '-"" "" ' ". ".-.-z - . .- ''-.""", ", " "v --. -. ':>
* Lit ofTabls vi

i.

1.0 INTRODUCTION

People concerned with the evaluation of software products are acutely
aware of the need for automated stipport tools and methods. If software quali- -

*" ty could be objectively and automatically assessed early in the life-cycle,
"- provisions could be taken to assure that quality goals are being met. This
- could ultimately reduce life-cycle costs and result in a more reliable and

maintainable product.

Prior work sponsored by the Rome Air Development Center (RADC), has devel-
oped the Software Quality Measurement Framework, a means to specify quality
goals and measure sortware quality. This effort enhances that framework by
identifying metrics that can be used on software designs, automating these
design metrics, and providing a methodology for using metrics, embedded in
automated design tools, during the early phases of the software development
life-cycle. An experimental design tool, Design Aids for Real-Time Systems
(DARTS), is used to illustrate the metrics and methodology. In addition,
design metrics in the Ada 2 context are also considered.

1.1 REPORT ORGANIZATION

V "
This report is organized as follows. Section 1 provides background, defi-

nitions, and an overview of the research program. Section 2 includes detailed 0
technical data and research results related to the identification and develop-
ment of automated design metrics. Section 3 describes a methodology developed
for using automated design-aid tools and metrics in support of an integrated
software development environment. Section 4 summarizes the conclusions of
this effort and Section 5 provides a list of recommendations for future
research. 0

The appendices supply A) a list of acronyms, B) DARTS trees for the exam-
ple designs, C) DARTS design trees of the Halstead metric implementation, D)
design trees of the McCabe metric, and E) DARTS data-flow tables for the
Experiment Controller example. A list of references and a bibliography of
sources used are also included. 0

Ada is a registered trademark of the U. S. Department of Defense (AJPO). •

INTRODUCTION 1

", ...

0..1

1.2 HISTORICAL PERSPECTIVE

High quality software is of interest to both the software engineering com-
munity and its users. As evidenced by the Software Initiative [DoD82a], -
recently renamed Software Technology for Adaptable and Reliable Systems
(STARS) [DoD 83], which by charter will develop tools and methods to increase
the quality of DoD software, software quality will no longer be tested-in, but
rather be required and designed-in. An important part of the Initiative is
the development of metrics to measure the quality of both the software devel-
opment process and software products. With some advantageous foresight into
this problem, the RADC has been sponsoring research in this technical area, in
particular the development of the Software Quality Framework [McC 77] which
identifies both user- and management-oriented techniques for quantifying soft-
ware product quality.

1.2.1 The Software Quality Framework

The initial Software Quality Framework effort, sponsored by RADC and Elec-
tronic Systems Division (ESD) under contract F30602-76-C-0147, addressed two
major issues, software quality specification and measurement. This effort
identified 11 factors in a hierarchical framework for acquisition managers to
use to specify, predict, and control software quality. The following defi-
nitions are provided.

Software: the programs and documentation associated with and resulting
from the software development process.

Quality: a general term applicable to any trait or characteristic,
whether individual or generic; a distinguishing attribute which indicates
a degree of excellence or identifies the basic nature of something.

Factor: a condition or characteristic which actively contributes to the
quality of the software. The following rules apply to the set of soft-
ware quality factors:

A condition or characteristic which contributes to software quality.

A user-related characteristic. 0

A relative characteristic between software products.

Criteria: attributes of the software or software-production process by
which the factor can be judged and defined. The following rules apply to
the criteria: •

-.- ,-"

2 Automating Software Design Metrics

%-%0%

..

°.. .. % .

Attributes of the software or software products of the development
. process; i.e., criteria are software-oriented while factors are

user-oriented.

May display a hierarchical relationship with subcriteria. q
May affect more than one factor.

Metrics: quantitative measures of the software attributes related to the
quality factors. The measures may be objective or subjective.

The relationship of factors, criteria, and metrics is illustrated in .

Figure 1. McCall's framework identifies 11 prime factors (correctness, effi-
ciency, integrity, usability, testability, flexibility, reusability, maintain- -
ability, reliability, portability, and interoperability) which correspond to
user-oriented attributes. Corresponding criteria were established as soft-
ware-product-oriented attributes. The criteria have a fourfold purpose:

1. To refine the factor.

2. To help describe relationships between factors.

3. To establish a one-to-one relationship between criteria and metrics. ,

4. To create a natural hierarchy in the framework for factors in software
quality.

In 1978, RADC and the U.S. Army Computer Systems Command continued this
work with a Metrics Enhancement Study under contract number F30602-78-C-0216.
The results of the study, reported in [McC 79), refined the results of the
initial study and produced a measurement manual for acquisition managers
describing how to apply the framework in the acquisition process.

In 1979, another contract, number F30602-79-C-0267, was awarded to develop
. an Automated Measurement Tool (AMT). The AMT, delivered to the Air Force in

September of 1981, automates the collection of specific metric data from pro-
grams written in COBOL, and provides a quality metric assessment.

In 1980, RADC sponsored additional refinements to the framework under con-

* tract F30602-80-C-0265 to formulate and validate metrics for interoperability
and reusability. This effort resulted in a slightly rearranged framework [Boe 1'

83b] and a new measurement manual [Boe 83a] for acquisition managers.

In 1982, RADC sponsored this effort, under contract F30602-82-C-0130, to
improve the framework by identifying metrics useful in the early phases of the

*• software development life-cycle. This was motivated by evidence that it is
- . easier and more cost-efficient to correct software at the requirements and

INTRODUCTION 3

.W.o %

• ,...-.v

FACTOR MANAGEMENT-ORIENTED

VIEW OF PRODUCTQUALITY
-"-A

" " .;'-'I

• .S, ,o

SOFTWARE-ORIENTED
CRITERION CRITERION CRITERION ATTRIBUTES WHICH

PROVIDE QUALITY

QUANTITATIVE "
METRIC METRIC METRIC MEASURES OF

THOSE ATTRIBUTES

Figure 1. The Software Quality Framework

design phases. Where most of the metrics previously developed were oriented
toward manual collection of data from software code, this approach emphasizes

. automated software design tools for data collection from encoded software p%

- design media.

Design tools for the DoD will in the future be increasingly focused on the ,.-,

. Ada language and Ada Programming Support Environments (APSEs). Some Ada-spe-
cific design tools already exist, such as PDL/Ada [Weg 82) and Byron [Gor 83). - -

. Other design-aid tools will become available as part of the DoD STARS program.
,

' sPart of this effort has investigated the evaluation of Ada designs with a
design metric.

• 1.2.2 Metrics of Software Quality 0

The collection of metric data during software design can provide early
visibility of the quality of tne developing software product, and better esti- -

mates of its size and complexity.

-. Software quality is that collection of traits or characteristics which
imply a degree of excellence or goodness of a software product. This research

4 Automating Software Design Metrics I
f%*

.%0

builds on the contributions of many other software engineering efforts, most
notably [MCC 77] and [Boe 83b], which have defined and refined a framework for
quantifying software quality.

According to the groundrules set in the framework, software quality is
measured by the absence, presence, or degree of sume identifiable software
product attribute. A premise upon which this research is based requires soft-• " i
ware designs to be viewed as viable and measurable software products, and the
criteria, which can be captured from software design media, must be defined.
Design metrics should not be dependent on the design medium used but the medi-
um must have the necessary information content. The information necessary for -
each depends on the metric chosen. The capture of this information can be
automated through the use of design-aid tools. Automation improves both the
efficiency of the process and the consistency of the data gathered.

Automated design evaluation would be useful to designers, program manag-
ers, and program office personnel alike. Designers would be able to quickly
compare competing designs and objectively choose the best one. Managers could
more easily track the software's development and estimate more accurately its
eventual size and completion date. Similarly, program office personnel would
have more visibility into the status and quality of the product for which they
are responsible. -

A more detailed description of the tools and techniques necessary to use
design metrics effectively is included as Section 3 of this report.

1.2.3 Automated Software Design Tools

Software at the design phase exists in various product forms, most common-
*'2. ly as flowcharts, program design languages [Cai 75], or other design media "'-."-"

(e.g.,CcSDL8O] and [Tei 77)). This product is an abstraction of the eventual
'- code, and as such, can be evaluated as a predictor of the quality of the soft-

ware code end-product. Early indicators of quality are desirable and have the -
-.5 potential to increase reliability and decrease costs. In a subsequent sec-

tion, this topic is considered with respect to automated design media which,
in the authors' opinion, have many advantages over classical design media
(e.g., flowcharts).

*- 1.2.3.1 Software Design Media

forA software design medium is any form of notation (textual or graphical)

for representing and communicating software designs. Design media aid soft-
ware development personnel by assisting with the following functions [szu 80].

1. Representation of the system and software architecture at various stag-
es of development.

INTRODUCTION 5

% % %-"% %

- - . -".% • %'.' .'.%' .'.'."'' " . ' '- . -' " "%- -% . . • --. J "J ,-' . -- -""e * "- ', " e - " -. . .- •-S

J

2. Enforcement of the use of design standards. ,

3. Implementation planning.

4. Performance and quality assessment. '

5. Management visibility and control during implementation.

Most currently available design media are deficient in one or more of the
above areas and few are automated. In the following sections a brief survey

-.. of current automated design media is included. This survey is not complete,
but does illustrate the available automated design media technology. .'.-

1.2.3.2 Automated Program Design Languages

Various automated program design languages (PDLs) are available. These 0
structured English processors produce various output to replace traditional
flowcharts. These media are easier to read and modify, and can be easily
adjusted for any desired level of detail. Some current examples follow.

The Caine, Farber and Gordon PDL [Cai 77] is a tool to aid in designing
* and documenting a program or system of programs. A design in PDL is written 0

in structured English then submitted to the PDL processor with control infor-
mation to form procedures. The output is a working design document consisting
of a detailed table of contents, a listing of formatted procedures, a call
tree, and a cross reference of the procedure calls. This tool evolved from

* -Caine and Gordon's earlier work [Cai 75].

PDL/Ada [Weg 82] was developed for use with the Ada language. It uses a
proper subset of the Ada language.

%'Byron (Gor 831 was developed by Intermetrics specifically for use with the
Ada language, although its author claims that its use is not restricted to

Ada. Byron is based on Ada such that any legitimate Ada program is also a
legitimate Byron specification. It differs from Ada in two respects. Byron
allows additional information about a declaration to be associated with it.
Second, Byron tools can produce useful output from incomplete specifications.
These advantages over pure Ada are discussed in more detail in Section 2.5.

1.2.3.3 Automated Requirements and Design Languages 0

The Problem Statement Language/ Problem Statement Analyzer (PSL/PSA) [Tei
77] was developed to improve the process of preparing and analyzing software
specifications. This automated tool provides a medium which uses objects,
relationships between objects, and properties of objects to specify soft-
ware/system processes. PSA checks consistency of the database and provides a
variety of reports.

6 Automating Software Design Metrics

v.-.-...

'...> .-..-....-,-> ..-. ., ..-.-. ,.: .-... ,.-..-.....,.-..,..- . ,..,. .. . -. .,

...

%.'.9°

1.2.3.4 Design Aids for Real-Time Systems (DARTS)

Design Aids for Real-Time Systems (DARTS) [Fur 81] [CSDL82] is a tool
developed at The Charles Stark Draper Laboratory, Inc. (CSDL) that assists in
defining embedded computer systems through tree-structured graphics, documen-
tation support, and various analysis features. These analysis features pro- -
vide both static and dynamic software design feedback which can potentially
aid in the production of efficient, reliable, and maintainable software sys-
tems.

DARTS uses a mix of hierarchy, control and communications primitives, and -

data structures to represent real-time systems. Requirements are expressed as
a functional hierarchy and designs as a tree-structured hierarchy of communi-

. - cating processes.

Although developed to represent real-time interactions, DARTS can be used
for both real-time and non-real-time systems. Through a friendly, menu-or-
iented interface, a user can build an encoded representation of a system; per-
form data-flow checking; generate simulations of the design to estimate
response time, throughput, and utilization; create a variety of data tables
and graphical tree-structured output in a variety of sizes; and, most recent-
ly, request an automated quality assessment of a software design. S

DARTS has been used throughout this research project as a documentation

aid and development test-bed for the software design quality metrics described
in the next section. Throughout this report, DARTS trees and tables appear as
illustrations. •0

1.3 PROJECT OVERVIEW

This research project is part of RADC's Software Quality Measurement Pro- -
gram. It has demonstrated that automatic and objective measures of software
design quality can be captured from encoded software design media. In addi-
tion, a methodology has been provided, useful for designers and program office
personnel alike, for incorporating automatic design quality assessment tools

* into the acquisition and development of future software products.

Various metrics have shown utility as indicators of design quality, but
few have been automated and integrated into a design-aid tool. Two metrics ,j.

were chosen for implementation and integration into an available design-aid
. tool. These metrics, though added to the DARTS analysis capability, are not

constrained to this particular tool. To demonstrate this, one metric is shown
to be applicable to Ada designs.

INTRODUCTION 7 ..- '

0 0

F-.-. -...

1.3.1 Research Objectives

The objectives of this research program were to

1. develop and validate software design quality metrics, and

2. develop a methodology, consistent with the RADC Software Quality Frame-
work, for

a. evaluating competitive software designs, hi
b. estimating software project planning parameters,

c. monitoring software product quality.

.1.3.2 Technical Approach •

To accomplish these objectives, the tasks listed in the following section
were defined. These tasks are described as stated in the contractual state-
ment of work, and a summary statement for each task follows the description.

* Detailed technical data corresponding to these tasks are referenced and follow
in the remainder of this report.

. Task 4.1.1 Develop Design Phase Software Quality Metrics

In this task, design phase-oriented metrics shall be developed and
demonstrated to enhance the Software Quality Framework. These metrics
shall include, but not be limited to, software science metrics.

. In this task, a survey of the literature was performed, the detailed

results of which are described in Section 2.2. The sources are
included in the bibliography. Design oriented metrics were examined
and shown to be compatible with the RADC Software Quality Framework.
The Framework was also reexamined in the light of dividing the total
design effort into architectural and detailed design phases. These
results are documented in Table 5.

. Task 4.1.2 Automate Design Quality Metrics

In this task, design quality metrics which are suitable for auto-
mation shall be identified. In addition, at least two metrics shall be
automated using the DARTS tool. Those metrics not suitable for auto-
mation shall also be identified and manual procedures for collecting
the data shall be documented.

8 Automating Software Design Metrics ,0

0

S...A

,. " .'% • ,... V... .. %d -• • % . .". .. -,. % % " " , .. ,..*•* -*% % .% % . ,%. % %*
• .% "° . . ." .. "... ,,. f-.•" .% ° .% " .•.. °. .. ** % ° . . % . ° .. °, . '.% "

-b U... .7,-... " p A1
In this task, metrics suitable for automation were identified and those
that were not were listed. These results are summarized in Table 5 and

. Table 6. Two metrics were chosen as candidates for automation using
DARTS. The Halstead metric technique was implemented after require-
ments and design details were resolved. The McCabe metric was also __ 0

.' implemented. Implementation independent details are included in Sec-
tion 2.2. Requirements and Design information for the DARTS implemen-
tation of both metrics is included in Section 2.3.

0 Task 4.1.2.1 Apply Metrics To Software Designs

In this task, the metrics shall be applied to a set of designs for
which actual code exists.

The literature search turned up many examples of code to use for this
validation stage. In some instances, code representing both good and
bad coding form was available for functionally equivalent units. These S
units were translated into a DARTS design and then evaluated by both
the Halstead and McCabe metrics. The DARTS trees for these designs
appear in Appendix B and the metric analysis is discussed in Section
2.4.

In order to extend this technique to other design media, the Hal- S
stead metrics were applied to Ada designs. The results of this task
are presented in Section 2.5.

• Task 4.1.2.2 Verify Metrics

In this task, the utility of the metrics as estimators of quality •
and size (where appropriate) shall be verified. -.

Empirical data has been generated for a small sample of problems.
These results are compared with subjective assessments, and previously
published data. The results of this task are summarized in Section
2.4.

" Task 4.1.2.3 Calibrate New DARTS Metrics

In this task, the metrics under development shall be calibrated, if
.O necessary, to improve the measurement technique.

A simple calibration was performed on the Halstead metric. Using the
results of Task 4.1.2.1, the design was modified to generate results
consistent with those found in the literature. No calibration of the
McCabe metric was performed.

INTRODUCTION 9

• %

, . -.,',.,,.' :. /X : , U ' ... " "" "" ''"

* Task 4.1.4 Develop a Methodology for Using Design Metrics

In this task, a methodology shall be developed to address the fol1-
lowing issues.

1. evaluate competing designs

2. estimate various project planning parameters

3. monitor the quality of a software project

* This methodology Shall be consistent with the objectives of the Soft-
.5- .*ware Quality Framework.

* The results of this task are the topic of Section 3. In that section,
a method is described for using Halstead's metrics in the early design

.. ~ .. phase to estimate the size of an implementation and hence the project
cost and schedule.

0

..... . -°.o

2.0 ON THE DEVELOPMENT, USE, AND AUTOMATION OF DESIGN METRICS

Software metrics can be useful within the context of an integrated soft-
ware engineering environment. The purpose of this section is to describe the
characteristics of such an environment.

2.1 A CONTEXT FOR METRICS IN THE DEVELOPMENT PROCESS

The software development process consists of personnel engaged in software
engineering for the production of software products. Boehm [Boe 81, pp.16]
defines software engineering as

"... the application of science and mathematics by which the capabilities of
* 'incomputer equipment are made useful to man via computer programs, procedures, -,

and associated documentation."

This definition implies skill, innovation, and intuition on the part of the

software engineer, as well as the support tools that the engineer uses. Mod- •

ern programming methods like top-down, stepwise decomposition, information
hiding, and modular programming have improved programming style and automated
tools have lessened the burden of documentation, program generation, config-
uration management, and analysis. Yet even today, few tool packages exist
that are integrated into a portable product which is useful throughout the
development process.

The term "integrated" is stressed to distinguish it from "bundled". Soft-
ware tools have traditionally evolved from the bundling concept. That is,
tools that function well individually have been used together with other simi-
lar tools. Data interfaces between tools, when they exist, are set up to pro-
vide a continuum of data flow and information from one tool to the next.
Often, error-prone human users are these interfaces, and the success of this
translation is dependent on the skill of the user. Information can be lost,
errors introduced, and product quality suffers. Manpower used in this opera-
tion is often wasted. By providing integrated tools, which by design directly .
interface to each other, the chances for a better quality product are
increased and manpower is reduced. Providing such a toolset is one goal of
the STARS program. This research supports that goal.

The basic elements of an integrated software engineering environment are ,.
skilled personnel, tools, and management and business practices which contrib-
ute to the development and maintenance of software products. This environment
provides the context for all of the activities associated with software prod- -

On The Development, Use, and Automation of Design Metrics 11

I.

0P r

'O
-

*uct development during its life-cycle. The life-cycle of a software product
'."' begins at the conception of a required capability and ends with the software's "

eventual retirement from use. In many DoD applications this life-cycle is
easily fifteen to twenty years long.

In the sections to follow, a software life-cycle model is described which
" depends on automated support tools, including software metrics. This model is

presented here to define a frame of reference for the succeeding discussion.

2.1.1 A Software Development Process Model .

Although this research emphasizes the design phase of a software product,
it is important to characterize the total picture to see where it fits in. In
this section, a software development process model is described. This model
takes into account both the software products (i.e., documentation, code, sup-
port tools, etc.) and the management activities (i.e., planning, organizing,
staffing, controlling, and assessing). Coordination of engineering and man-
agement talent creates quality software. Integrated software tools support
both of these disciplines over the life-cycle of the product. The scope of
this research extends to both of these domains. Quality metrics can provide
an assessment of the quality of the software product, and indirectly, the
quality of the process. These issues will be discussed further in succeeding 6
sections.

2.1.2 The Software Development Life Cycle

The software development life-cycle can be simply divided into 6 phases. .

0 Software Requirements Specification

* Architectural Design (Top Level or Preliminary)

0 Detailed Design
*" a

0 Code and Unit Test "'V

* Integration and Acceptance Test

* Operations and Maintenance

It is often difficult to determine where one phase begins or ends so the
following guidelines are offered to precisely define the start and end points
of each phase, the corresponding software products, and management activities.
This model is generally applicable to medium (i.e., 1 to 4 man-years) or large
scale (i.e., greater than 4 man-years) development efforts.

12 Automating Software Design Metrics I..-

*% %

vn- -o I L"" " "'" ' " :" " '""" " ""i !" " """'"""

1. Start Requirements Specification Phase , 1
This phase assumes that a prior system specification activity has

occurred to determine an appropriate division of basic requirements
made between hardware and software. This requires a definition of the
system architecture, man-machine interface, and quality goals, and a
plan of basic milestones, activities, and schedules. The input to this

J. first software development phase is generally a verbal statement of the
user's software needs. This activity should clearly define what the
software is to accomplish.

. Activities - Planning, requirements formalization and consistency
checking.

* Outputs - Preliminary plans, requirements document.

2. End Requirements Phase, Begin Architectural Design Phase

This endpoint is often reached by a formal requirements review and
acceptance activity. The Architectural Design Phase, often refered to
as Top Level or Preliminary, should produce a functional architecture
which is sufficiently detailed in function, performance and interface
definitions, to allow both users and designers to be confident that
requirements can be met and the design implemented. Development data,
sufficient for product and process metrics, may be collected on avail-

able documentation. Support tools, necessary for the effort, should be
acquired or developed.

0 Activities - Architectural design, planning.

• Outputs - Detailed development plans, architectural design docu-
ment.

3. End Architectural Design Phase, Begin Detailed Design Phase 0

This endpoint is often reached by a Preliminary Design Review .

activity. It may be formal or informal.

• Activities - Software component architecture definition, module
design, data base design.

outputs - Detailed design specifications for each module, data base
specifications, preliminary test and integration plans, draft
user's manual, product measures, and process measures.

4. End Detailed Design Phase, Start Code/Unit Test Phase

On The Development, Use, and Automation of Design Metrics 13

. %

0..., 0'.,. .. ,>,,,,..;,;..;: .. ,...,,..::-.-,,,, .. ,-, . , , .. ,.,, .

m0
-

7W
o

This endpoint is reached by a Critical Design Review activity. The
review, or walkthrough, can be done at the module or program level.

* Activities - Develop code and test each module according to stand-
ards set in development plan. Verify completeness and provide
requirements traceability. Configuration manage modules. Complete
test, acceptance and integration plzns, and user's manual.

. Outputs - Verified and tested modules, approved acceptance plan,
product measures, and process measures.

5. End Code/Unit Test Phase, Start Integration and Acceptance Test Phase

This phase ends when all modules have satisfied the unit test
requirements.

* Activities - integration of modules into programs, hard-
ware/software integration and system test. Update detailed design
documents to reflect the as-coded version. Provide problem report-
ing and resolution.

S Outputs - Problem reports, configuration status reports, as-coded S
design document, test results for archive, performance data, prod-
uct measures, and process measures.

6. End Integration and Acceptance Test Phase, Start Operations and Mainte-
---- nance Phase "

This endpoint is reached by completion of the Acceptance Test
activity. The product is delivered to the user and installed. The
product may include: documentation, reports, development standards,
support tools used to develop the software, development data, test
results and procedures as well as the code. Training may be provided
as well as any warranty service.

. Activities - Installation, support, training.

S Outputs - All deliverables.

2.1.3 Using Metrics During Software Development

The Software Quality Framework has provided a language and structure for
identifying software quality goals as well as providing some metrics of soft-
ware product and process criteria. The previous section established start and
endpoints for phases within the software process life-cycle and listed various 5
products, development data, and process attributes which can potentially be

14 Automating Software Design Metrics

S% %

- S-
_' ,,-...... ,..,.... ,, , -

".'- ' " " ' . ,"-" ",' ."..,..•"..".."..-.""-..-.-..-...-..--.-..".,-..."."."-"'."..-".,,.-."",..".....-"*","-.." .. i'""-'-'

*'. -. . ." -.

evaluated by some measurement tool based on the ideas stated in the Software
Quality Framework. A subset of the phases, products, and applicable metrics
is summarized in Table 1.

Table 1. Summary of Phases, Products, and Metrics

Life requirements architectural detailed code and " .

Cycle design design unit test " -

Activity

Products requirements architectural detailed code
document design design

document document

Metrics McCabe McCabe McCabe
Halstead Halstead Halstead Halstead
pages # lines # lines # lines

McCall McCall McCall

2.2 SELECTING METRICS FOR AUTOMATIC MEASUREMENT DURING DESIGN

As part of Task 4.1.1, Develop Design Phase Software Quality Metrics, a
survey of the current literature on software metrics was conducted. The goal
of the search was to identify metrics which are valuable predictors of soft-
ware quality and other software development parameters, and can be applied
during the design phases. The results of the survey are presented in Section
2.2.1, and the definitions of the identified metrics are presented in Sections
2.2.2 and 2.2.3.

Of the metrics identified during the survey, those which were compatible . '

with the Software Quality Framework were evaluated along with the Framework
metrics for application during the design phases and automated data col-

n- lection. Section 2.2.4 discusses the criteria that make a metric suitable for
use during the design phases, and the conditions under which it may be meas-
ured by a design tool. The detailed assessment of the McCall, McCabe, and
Halstead metrics follows in Section 2.2.5.

.

On The Development, Use, and Automation of Design Metrics 15

_ 4%

r.%

-,~~~~..,,.....,,......,,.................... ,..................,.................... -. ,.......-..

L* V,

2.2.1 A Survey of Recent Metrics Literature

The sources for the metrics literature survey are included in the Bibli-
ography. They snow that much of the work going on with software metrics today
is in measuring existing code with the Halstead or McCabe metrics and using __ S
the values to predict quality parameters such as the number of errors. The
predictions are then tested against actual error data, and the measurement
techniques are refined. The results indicate that the various Halstead met-
rics and the McCabe cyclomatic complexity metric are useful over different
types of applications and implementation languages. These are, then, prime
candidates for use during the design phases.

The McCabe and Halstead metrics basically measure different aspects of the .*.,/

complexity of software: its structure and language use. In the Software Qual-
ity Framework developed by McCall et al., the quality criterion simplicity
(the inverse of complexity) contributes to many of the quality factors,

including testability, reliability and maintainability. As such, it is a val- 0
uable indicator of quality during the design phases. The Software Quality
Framework, though, covers other quality factors and provides metrics to meas-
ure the criteria that affect them. To make sure that as many quality factors
as possible were covered during the desiqn phases, each McCall metric was con-.

*sidered in detail along with the McCal, and Halstead metrics to see which com-
ponents might be measured during the design phases, and which might be O
automated. "" -""

2.2.2 McCabe's Cyclomatic Complexity Metric

McCabe's cyclomatic complexity metric is based on the desire to limit the
size of modules in a software system so that they are easy to test and main-
tain. He proposed that the number of paths through a module is a better meas- -.8':.
ure of testability and maintainability than just the number of
instructions/statements in a module: A strictly sequential module, with just "./•..5
one path, may be easier to test and maintain than one with a more complicated
control structure, even though the sequential module is longer. More paths -

-

through a module require more tests, and McCabe inferred that more paths will -

make it harder to locate and fix errors in the module or modify it.

The metric is based on the complexity of the control structure of a module
and of the system of modules, so it is applicable during the design phase as
soon as that structure begins to evolve.

2.2.2.1 Cyclomatic Complexity Metric Definition

The definition of the metric is based on the following graph theory.

* S•

16 Automating Software Design Metrics

* 0

* - .-. -. - W* ~ '. ~ ~ . -. U

A directed graph can be drawn to represent the control flow of any module.
- It resembles a flowchart, but is constructed with more formal rules. Each

* . group of statements which is executed without a control transfer becomes a
node, and the control transfers become arcs linking the appropriate nodes.
Ideally, all possible paths through a module would be tested. In practice,
this is often prohibitively expensive or impossible. (If there is a backward

- branch in a module, the number of potential paths is infinite). For Et module
,. with a single entry point and a single exit point, a graph theory result
" applies: a basis for the graph can be found, in terms of basic paths, which,

in linear combinations, generate all possible paths through the graph. McCabe
proposes that the number of paths in the basis is a reasonable measure of the
testability and maintainability of a module. It can be used to decide when to

" break up a module, or to identify modules which will be more difficult to test
and maintain.

The number of basic paths in a graph, the cyclomatic complexity, is 0
defined in [McC 76] as

v = e - n + 2p

where

n is the number of nodes in a directed graph of the program,
e is the number of edges (arcs) in the graph,
p is the number of connected subcomponents (modules) of the program,

and
v is the number of basic paths through the module.

If v is calculated for all the modules in a system, the value of the metric
for a system will be the sum of the values for the modules in the system.

The cyclomatic complexity can also be obtained from a visual inspection of
the program graph, when the graph is planar and connected. In this case, the
cyclomatic complexity is equal to the number of regions into which the graph _
divides the plane. ,' '"

Finally, for structured programs, the cyclomatic complexity is equal to
the number of predicates (binary decisions) in the graph plus one. (Compound
conditions and multi-way branches are treated as if they were the equivalent
set of nested single-condition binary branches). A graph with no branch .

region to the graph.

McCabe recognized that more than one simple predicate could be included in
a single programming statement, such as an IF. Predicates beyond the firstr - clearly add complexity, but the graph would only show a single binary branch. S

To account for the added complexity, he proposed counting the number of simple -.

On The Development, Use, and Automation of Design Metrics 17

.'..

. . q%

-" ,°'-"- ."' " - , . ' " "." " ','': ","'-J'.-... -' '. ,-' . - '" ""., ' .. '' - . ""'.:'.o": ,'' .".:/'' ¢ . .% " S

predicates, rather than the number of decision statements. This amounts to
. modelling any compound condition as a set of nested IF statements.

Myers [mye 77] proposed that the metric value should be an interval, rath- A
*er than a single number. The lower bound would be the number arrived at by
.. using the number of decision statements, and the upper bound would be the num-

1/.. ber arrived at by using the number of simple predicates. This method has the
satisfying effect of giving the metric values for simple examples the same
ordering as their subjective evaluations of complexity.

Neither McCabe's method nor Myers' method gives different weight to condi-
tions at different nesting levels.

2.2.3 Halstead's Software Science Metrics

Halstead's Software Science [Hal 77] is a theory which has been applied to 0
the complex problem of software project management. Halstead claimed that
algorithms expressed as computer programs or other written media could be ana-
lyzed in a consistent and simple manner to yield indicators or measures of
quality and other software development parameters. Researchers over the years

• have used this theory in a variety of experiments which, in general, has shown
it to have some degree of utility. Most experiments to date have, however,
used this technique on software at the code stage of its development. This
task extends some previous work [Szu 80, Szu 81] which claimed that useful

• ." software science measures could be derived from software design media by
embedding this metric technique in an automated design-aid tool.

2.2.3.1 Software Science Definitions

The Halstead technique is based on the identification and enumeration of
four basic parameters that are directly available from the language used to
express the algorithm. Other parameters, which are derived from these, form
the set of software science metrics. All of the parameters are shown in
Table 2.

The four basic parameters are: -
n, number of distinct operators
12 number of distinct operands

0 N, total number of operators •
N2 total number of operands.

According to Halstead, algorithms consist of operators and operands, and
nothing else. The validity of this claim is apparent when programming lan-
guages are considered, but when other forms of algorithr representation are
used, ambiguities often arise. Languages which have structured or abstract
data types generally cause the most difficulty. It is up to the user of the

18 Automating Software Design Metrics

"_ -". ,. -% "- . . *--. .".% % % * -% -. . % - - ..• *.*.*- .*.-2 .C -

- - . - . - . -- - - . . 4-•..- - "-,

4,.

Halstead technique to decide which elements of the vocabulary are operators
and operands according to the vague definitions provided. Operators are sym-
bols or combination of symbols which affect the value or ordering of operands.
Operands are variables or constants that the implementation employs.

2.2.3.2 A Generalized Halstead Technique

' When considering adapting the Halstead technique to a particular design
medium, the following procedure is offered.

1. Identify operators and operands from the vocabulary of the language
used in expressing the design. This step is often the most crucial and
controversial part in the technique. Much prior work (e.g., [Els 78],
[Fit 78), [Ham 82), [She 83]) has established evidence that it is dif-
ficult (and sometimes impossible) to determine whether a vocabulary
element is to be classified an operator or operand. There is no con-
sistent and non-ambiguous definition to use as a foundation. This has
caused substantially different results by different researchers. It is
therefore important to be aware of these findings and be consistent "%.
within an experimental domain.

2. Count the number of occurrences of each operator and operand. Again, P
this step needs to be consistent. Halstead, for example, proposed that
each "GO TO label" be counted as a unique operator for each unique
label, yet he considered "IF statements" as n occurrences of one unique
IF operator.

3. Calculate the metrics based on the formulas listed in Table 2.

In this report, consistent counting techniques are defined for the DARTS
design medium (Section 2.3.2), and for Ada as a design medium (Section 2.5.4).
Other examples can be found in the literature. Most, however, consider only ..

programming languages like Fortran, PL/I, and IBM assembly language.

44%~

-..

-" ~On The Development, Use, and Automation of Design Metrics 19-....
4 -

-"

"4,. 4'4

Table 2. Halstead's Software Science Metrics.
%%-~

HALSTEAD METRIC SYMBOL FORMULA

DISTINCT OPERATORS 171

DISTINCT OPERANDS

TOTAL OPERATORS N1

TOTAL OPERANDS N2

VOCABULARY 1r1 2 ."

DESIGN LENGTH N = N1 + N2 V.'-I

ESTIMATED LENGTH N = 71 Iog2 ti1 +172 10g 2 2 72

PERCENT OFF

DESIGN VOLUME V = N log 2 77

POTENTIAL VOLUME V* = 'og 2 '

DESIGN LEVEL L = V*/V
A

ESTIMATED DESIGN LEVEL L = 272/?r1N

INTELLIGENCE CONTENT I LV , V °
.JL,:

LANGUAGE LEVEL X = LV*

ESTIMATED LANGUAGE LEVEL X = L2 V

EFFORT E = V/L
A A

ESTIMATED EFFORT E = V/L

2.2.3.3 Interpreting Software Science Metrics

Software science metrics measure various complexity aspects of software
components. The following discussion provides an interpretation of some of
the more usable metrics defined in Table 2.

The Length (N) is roughly equivalent to the conventional count of executa-
ble statements in a program. This is based on observed occurrences of opera-
tors and operands.

. ,m

20 Automating Software Design Metrics

7' S'%="

w.-" :S

-A

The Estimated Length (N) is a metric used to predict the ideal length of
an implementation based only on the number of unique operators and operands --
available in the language used. This metric is often compared with the
observed length to determine whether impurities are present in the implementa-
tion. Impurities generally reflect poor programming practice and make the
implementation less concise than ideal.

The Volume (V) represents the number of bits necessary to encode the pro-
gram using one character per operator or operand.

S
The Potential Volume (Vs) is the most compact form the program could take,

considering it as a built-in function with a list of input and output argu-
ments. This term is often based on opinion, rather than calculation.

The Level (L) is a ratio between the Potential Volume and the actual Vol-
ume. It is often regarded as an indicator of the level of abstraction of S
implementation. Since the Potential Volume is an ambiguous quantity, the

" Estimated Level () is often used, for it is dependent on readily observable
" quantities. .

The Intelligence Content (I) is an estimate of the Potential Volume. It
is independent of the language used and is expected to be invariant over dif- S
ferent implementations of the program.

The Language Level (X) measures the expressive power of a particular lan-
guage. High level languages, that allow alternatives for expression, have
language levels greater than those of assembly language. Halstead measured a
variety of languages and computed the following: English prose = 2.16; PL/I = S
1.53; FORTRAN = 1.14; and Assembly = .88. The Language Level is often esti-
mated (,X) to avoid using the questionable Potential Volume term.

The Effort measure (E) is used to predict total programming time when
divided by the Stroud Number (number of elementary mental discriminations per
second by a human). Halstead also provided a formula for estimating Effort O

" (E) which provides an alternative form. This alternative is discussed in more
detail in Section 3.1.1.

2.2.4 Distinguishing Metrics by Phase and Automation Potential

This section establishes the potential for automatically measuring the
McCall [McC 79], McCabe, and Halstead metrics in the early life-cycle phases,
using a design tool such as DARTS.

McCall broke down the software development process into requirements,
design, and implementation phases to indicate when the metrics could be 0

applied. Later versions of the Framework [Boe 83a] [Boe 83b] divided the -

On The Development, Use, and Automation of Design Metrics 21

.
.

. design phase further, into the Top Level and Detailed design subphases, but
did not reclassify the metrics. This life-cycle phasing is more appropriate
for this discussion because the subphases mirror the breakdown into prelimi-
nary and critical design reviews, and architectural and detailed design docu-
ments, as discussed in Section 2.1, providing measurable products and proc-

"'",.'.'.esses. ,'-_

'' The criterion which determines whether a metric is applicable to a phase
or subphase is that the information required for its evaluation be present in
the software product for that phase or subphase.

For the requirements phase, the product is the Software Requirements Spec-
ification; for the design subphases, the Software Architectural Design Docu-
ment and the Software Detailed Design Document. For the implementation phase,
the product is the source code.

For the design phase, similar information is contained in the documents 0

for both subphases, but the level of detail differs. The Proposed Military
Standard on Defense System Software Development, (MIL-STD-SDS) [DoD 82], out-
lines the required documents. The information called for in the design docu-
ment descriptions includes requirements allocations, interrupts, timing and

sizing estimates and budgets, limitations and constraints, special require-
ments, interface definitions, database definitions, and control structure and
flow. The architectural (Top Level) design document defines these items for
the Computer Software Configuration Item (CSCI), shows the structure to the
Computer Software Component (CSC) level, and defines the required items for
each CSC.

The detailed design- document evolves from the architectural design docu- 0
- ment. When it is completed, it includes a full breakdown of each CSC into

units and modules, to the level required for coding. All the control logic is
shown, and the data structures are broken down to individual variables. The
items listed above are included for each module. (The detailed design sub-
phase could be divided in two to yield three subphases for the design phase.
The first part of detailed design would have a product in which the breakdown
into units and modules is shown, and the second would have a product in which
the logic and data internal to each module is shown. The former would show

the control structure for the whole CSCI, while the latter would provide the
code-to specification in a form easy to parcel out.)

Whether or not a metric can be measured by a design representation tool 5

depends not only on the information needed to evaluate it being present, but
also on its being present in a form which can be recognized and manipulated by
a program. Generally, this involves providing a syntactically recognizable
form for the information. For example, in DARTS, the input and output data
items for a node are specified separately from the processing description, the

"-. 22 Automating Software Design Metrics

: --0

%F

V"'t

0 5Jo". "J ", '- . " "-4 ' .- " "," "* . - % " .-. '' ' '. ' ' • " " 4-". - -' -- '""". ' ' ' '' ' .

R T -a-. . ."°.

inputs are distinguished from the outputs, and each item is distinct. This
structure makes its possible to answer questions like:

1. Are any data items specified for a particular node?

2. How many data items does the node have?

3. How many input items does the node have? *.

4. How many of the input items are also output items?

This does not, however, allow us to answer the question,

5. Are all input items used in the node?

since the answer depends on other information about data use being present in
the database and in a form that can be processed. As an alternative, it would
have been possible to have provided a field for data items where input and
output were not differentiated. The user might have included comments distin-
guishing input and output. The information content of the database would be .
the same, but the capability for automatically answering the questions would "
not: Questions 1 and 2 could be answered, but not 3-5. Finally, it would
have been possible to have provided no separate data item field. The user 0
might then have included the data item information in a free form text field -''[
associated with the node. Again, the information content would be the same, ...

but in this case none of the questions could be answered automatically. -.

Even when the necessary information is present, some metrics are inherent-

ly not measurable by a design representation tool, because they involve a
knowledge of tIe problem, and a human judgment about the sufficiency or com-
pleteness of the design. Most of the McCall metrics are really checklist
items, such as making sure that all device errors are handled ([McC 791
ET.5(2)), or that the numerical methods used are sufficient (AC.l(4)). A tool
which has a design representation as its database cannot tell whether some- .
thing has been left out of that representation, unless it can do so by check- S
ing consistency with another source of information in the database. It could
contain a list of such items and let the user check them off. The metrics
could be derived from such a list.

In this project, DARTS is used as the tool context in which the metrics
are evaluated for potential of automatic measurement. The context for infor- 0
mation content is based on the design documents previously mentioned.
Although most of the information called for in the design documents can be
included in a DARTS database, much of it can be expressed only as comments in
the free-form text associated with a node. Shown in Table 3 and Table 4 is
how the information in each paragraph of the MIL-STD-SDS design documents can

On The Development, Use, and Automation of Design Metrics 23

-. .

*"-"-" . Sj"-"% '. "". . .-. .. .- -.-.-.-. . "% :. "%% " .- •'%. %,1 '%" % % .. %. %

a - -.. . -. - . - WI

be represented in DARTS. The paragraph numbers are taken from the associated -',-

Data Item Descriptions (DIDs) ([DoD 82] R-DID-110 and R-DID-ll).

* In addition to the presence or lack of information, the feasibility of
measuring a metric automatically depends on the practicality of performing the

. necessary processing. This may range from trivial to beyond the scope of the
existing technology.

Table 3. MIL-STD-SDS Top Level Design Document Information in DARTS

Paragraph number Means of representation in DARTS

-. i Text.
1.2 Text.
2.1 Text.
2.2 Text. 0
3 Text, requirements and architectural

design trees.
3.1 Architectural design tree, data set/use

table, module table.
3.1.1 Text or by modelling the data source

as a data producing process. 0
3.1.2 Text or by modelling the data source

as a data producing process. [*""."
3.2 Text.
3.3.1 Text or could be modelled.
3.3.2 Diagram, ECSL simulation output.
3.3.3 Diagram.
3.3.4 DUR statement in tab.
3.4 Same diagram as 3.3.
3.4.X Text.
3.4.X.1 Text.
3.4.X.2 Indata, Outdata; data set/use table.
3.4.X.3 Text.
3.4.X.4 Text or by modelling a handler.
3.5.all There are no DARTS facilities naturally

suited for representating data structures.
3.6.all Text.

*4, 5, 7-9 Intentionally left blank in DIDs.
6 Text.
10 Appendices - not applicable.

24 Automating Software Design Metrics

-.

., •
-/-:'.." ",.'- '- .-...- ".' '...".-............."'..... ' ' ' ' - ' '/ " "

- ,~~~~~~~~~~~~~~~~~~~~~~~..... -... "-.,,...'.. , ,,, , .-.... : ,.. .. . , ,..-.....

77 * ..

*'

Table 4. MIL-STD-SDS Detailed Design Document Information in DARTS

Paragraph number Means of representation in DARTS

1.1 Text.
1.2 Text.
2.all Text.
3 Text.
3.1 Database printout.
3.1.1 Diagram, #variables.
3.1.1.1 Text; requirements, architectural design,

and detailed design trees.
3.1.1.2 Text. Timing through DUR statements

in tabs, output of ECSL simulation.
3.1.1.3 Diagram except data structures.

Data descriptions in text. 0
3.1.1.3.Y a) Text. ... 4
3.1.1.3.Y b) Data variables - partial.
3.1.1.3.Y c) Diagram, indata, outdata.
3.1.1.3.Y d) #variables, data set/use table.
3.1.1.3.Y e) INV
3.1.1.3.Y f) Diagram.
3.1.1.3.Y g) Diagram.
3.1.1.3.Y h) Data set/use table.
3.1.1.3.Y i) Text.

3.2.1.X.6 May be modelled.
3.2.1.X.7 Text.
3.2.1.X.8 DUR statements in tabs.
3.2.1.X.9 Text.
3.2.1.X.10 Text.
3.2.1.X.11 Diagram.
3.2.1.X.12 May be modelled, DUR statements

in tabs.
3.3 Text.
4, 5, 7-9 Intentionally left blank in DIDs.
6 Text.
10 Appendices - not applicable.

On The Development, Use, and Automation of Design Metrics 25

Or VIA

: ::S:

- : . '

2.2.5 Evaluation of Candidate Metrics

Table 5 summarizes the results of evaluating each of the metrics in [McC "]
79) Appendix B, the McCabe cyclomatic complexity metric [MCC 76], and the var-
ious Halstead metrics [Hal 77). The metrics were assessed against the crite-

ria discussed above in deciding during which software development phase they
are applicable, and whether or not they may be measured by using the informa-
tion in a DARTS database.

The table shows [McC 791's designation of applicability for the design
phase in the center column under design (labeled MCC), between the desig-
nations for the architectural (labeled AD), and detailed (labeled DD) design -

subphases. When the designation for any phase disagrees with [McC 79), it is
appended with an "*"..

* The criteria used to determine each metric's potential for automation,
noted in the AUTO column of the table, are relative to the current implementa-
tion of DARTS. The following symbols are used to indicate the distinctions
discussed in the section "Distinguishing Metrics by Phase and Automation
Potential."

YO - Use of DARTS guarantees that this metric takes a particular
value. For example, the metric MO.2(1) asks how much of the design is 0
represented in a hierarchical structure. DARTS representations are
inherently hierarchical, so the metric always takes the value 1.. -

Yl - The information needed is present in a form recognizable by a
program, so the metric is automatable.

Nla - The information needed is not present, but might be added.

Nlb - The information needed is not present, and cannot be added.

Nl - The information needed is not present, and is not really
appropriate in a design representation tool. 0

Y2 - The information needed is present, but not in a recognizable
form. DARTS could be changed to provide a syntactic form for the infor-

mation.

N2 - The information needed is present, but not in a recognizable O
form. DARTS cannot be changed to provide a syntactic form for the infor-
mation.

N3 - The information needed is present, but the metric is not ame-
nable to automatic calculation. It asks a question which requires under-
standing of the problem being expressed, for example, whether some of the

26 Automating Software Design Metrics . '.=

% %. .,

,0 0,, -,, % ,% .% " .% % % % % .% .- . % %. .%.. ." %- .- - .,. °% % ' ,

";.'Y:.','.'. . '.-.'.".",'%"."/ ." ...'-. -".":" .".' .."."-.".'.., .,".-".".-.%" ..."," ","...-"-".".-, ,"'A

-" , J' ,4 @ ',r ,4 , , ; ',. . . " r r " " ,..,. 4. . . S.

. processing expressed in the design is complete, sufficient, or correct;
or whether a particular function is present in the design.

The practicality of providing the necessary processing is indicated in the j
table in a gross fashion. An "*" is appended to the automatability symbol if
the processing is likely to involve a substantial effort. "Note" follows the2
table entry if a note is provided in the following section to comment on or
explain the entry.

:ps.- .:;--

2.2.5.1 Notes on Table5 .

"-.'.. CP.l(1) This metric asks whether or not all references are unique, e.g., a
function is not called by one name in one place and another somewhere else.
This is really a completeness question. It is not determinable automatically,
since the processing will assume that different names refer to different enti-
ties. However, the data set/use table and the module table present the infor-
mation needed in a tabular form so that the judgment may be more easily made.
For example, a spelling error should be obvious. ..

cP.l(5) This metric asks whether or not all conditions and processing are
specified for each decision point. This could be enforced if DARTS were modi- * ,
fied to require that selector nodes have n+l offspring for n predicates,

* instead of assuming a null n+lst offspring.

CP.l(8,9) These metrics check consistency between requirements and design,
and design and code. [McC 79] gave this up as too difficult to measure.

CS.2(2) This metric is the proportion of modules which do not conform to
naming conventions. Naming conventions should be used from the beginning, in
requirements definition, to help traceability and prevent confusion. The
"Nla" index here is used to indicate that a particular convention could be
added; the "N3", that the metric relies on a human judgment.

CS.2(3) This metric calls for global data items to be defined in the same
manner in all modules, so it is another example of measuring conformity to a 'At
convention. Insofar as global items may be defined in DARTS, the checknodes
function detects anomalies. .,.

CS.2(5) This metric measures data type consistency. A strongly typed
implementation language would enforce this.

ET.I(1) This metric asks whether or not any concurrent processing is cen-
trally controlled. Since DARTS provides a means for expressing processing
concurrency and data exchange, any concurrent design expressed in it will be
consistent. The metric definition does not contain enough detail to know if
this is what is meant, or if it is a checklist item.

On The Development, Use, and Automation of Design Metrics /

SV

N.,:-:.;- .&,I&

-"- . . .-. .**k"* .* * .* % .*. X

..,.. a.

Table 5. Metric Applicability and Autoinatability (Part 1 of 6)

METRIC IREOTS ---- DESIGN - -- - IIMPL IAUTO
I I AD McC DOI I

---------------------------- ------- ------------------ ------ -----
TR.1 Cross reference relating modulesi N I Y Y V Y Nia I

to requirementsI I I I
CP.1 COMPLETENESS CHECKLISTI II I I

(1) I Y Y V Y I Y I YO/N31 Note

(2) I Y Y Y Y Y INia I

e:(4) lv Y Y' vi lvi
(5) I Y ~ Y "' Y Yv Note

(6) I N I N Y v Y Nla I
(7) I Y I Y Y Y ~ Y INia I
(8) j N j Y D1 Y j N j- Note
(9) I N j N D1 N I y Note F

CS.1 PROCEDURE CONSISTENCY MEASURE

(1) I N I Y v ve Y i O I
(2) N I N Y V Y Ivo

*(3) IN I N V vi Y N3 I
(4) I N I N V Y Y v N3 I

CS.2 DATA CONSISTENCY MEASUREI II I I
(1) I N N Y y NI NiN a I
(2) I V Y Y Y I Y I Nla/31 Note

(3) I N I Y v I Y I Nla/31 NoteI%
(4) N I N DI V Y l
(5) I N I N Di V I- Note

AC.i ACCURACY CHECKLIST II I I
(1)Y N N N I NI- I-

(2) I N N N I N I - I
(3) I N I N Y? Y N IN3 I
(4) 1 N I N v Y Y v N3 I
(5) I N i N N N Y

ET.1 ERROR TOLERANCE CTL CHECKLIST II I
(1) N I Y V V Y I YO/N3l Note

(2) N I N V V Y V N3 I
(3) I N I N Y V Y V ila I

-J

28 Automating Software Design Metrics

0I 0

K ~"zY~:....~ v~i .

- . Table 5. Metric Applicability and Automatability (Part 2 of 6)

MTC RET -- DSIN-- IMLIAT--------- -------------------------------- ------ ------------- ---- - I ---
ET.2 RECOVERY FROM IMPROPERINU II I

0-() Y N N N I NI
*(2) N Y Y Y Y 1N3 I

(3) IN IY Y Y Y 1N3I9

(4) N Y Y Y Y ~ N3
(5) N V V V Y 1N3

ET.3 RECOVERY FROM COMP. FAILURE I I I I
(1) IN N N NI
(2) I N I N V V Y Nla- Note

(3) N N Y Y Y INlaI Note

(4) N N ' V Y 1N3 I
ET.4 RECOVERY FROM HARDWARE FAULTS I J j I

01) Y N N N I NI I
(2) I N I Y V Y Y N3 I

ET.5 RECOVERY FROM DEVICE ERRORS II I I
(1Y N N N I NI I

(2) I N I Y V Y Y " N3 I
SI.1 DESIGN STRUCTURE MEASURE

(1) I I Y V V Y V YI O I
(2) I N* I N N Y I * V N3 I
(3) I N I N N Y I Y IN3/V2*1 Note *

(4) 1 N* V N YO I Y I N3 I~
(5) 1 N I N N Y* I Y I VO I
(6) 1 N I N V V I Y IVO/Nial Note

(7) 1 N I N Y Y I Y I Nla INote
(8) 1 N I Y DI Y I DII I
(9) 1 N I . N Ys 02 - I

SI.2 USE OF STRUCTURED LANGUAGE OR I N I N N N I 02 1 Note

PREPROCESSOR II I I
SI.3 COMPLEXITY MEASURE I N Y Y V Y Y 2 INote
SI.4 MEASURE OF CODING SIMPLICITY II I I

()I N I N N N I K.
(2) I N I N N N V

(3) I N I N N N j
(4) I N I N N N Y

(5)I N I N N N yi - I-
(6) I N I N N N Y -

(7) I N I N N N Y I
0(a) IN N N NI YI

(9) I N I N N N Y j
(10) I N N N v' I Y1lv
(11) I N I N N v I V 1v2
(12) I N I N N N I 03 - I
(13) I N I N N N I il1

S 14 I N I N N N D 2 - I
(15) I N I N N N I D2 - I

(1)I N I N N N 01il

On The Development, Use, and Automation of Design Metrics 29

% ~.-

%0

X0

* * . * " *--. -..*° - ,]

Table 5. Metric Applicability and Automatability (Part 3 of 6)

METRIC I REOTS I -.-- DESIGN - --- IMPL I AUTO I__
AD MCC 00 1 I -

-------------------------------------- ----- --------------- -- --- ---
MO.1 STABILITY MEASURE - applicable ----------- D ---------------------

MO.2 MODULAR IMPLEMENTATION MEASURE " I''"-
(I) N Y Y Y Y YO Y I
(2) N N N N Y O

(3) N N Y Y Y Nla "

(4) N Y Y Y Y Y1 %

(5) N Y Y V Y lvi %
(6) N Y Y Y Y Y O I
(7) N N Y Y Y N3 I
(8) N Y D1 Y D N3 j

GE.1 EXTENT TO WHICH MODULE IS ,"I-,

REFERENCED BY OTHER MODULES N Y Y Y Y Y1 ,-. ..

GE.2 IMPLEMENTATION FOR GENERALITY ".''''.

(1) N N Y Y Y N3 -

(2) N N Y Y Y N3 -

(3) N Y Y Y Y N3 .

(4) N Y Y Y Y N3 I

(5) N Y" N Y* D2 Nia "
EX.1 DATA STORAGE EXPANSION MEASURE' -I

(1) N Y Y Y Y N1 .'2-.

(2) N N N N Y " -I

EX.2 EXTENSIBILITY MEASURE I
(1) N Y Y Y Y N3 -

(2) N Y Y Y Y N3,"

(3) N N? N N? Y -? Note

IN.1 MODULE TESTING MEASURE I -"

(1) N Y Y Y Y Nia

(2) N Y Y Y Y Nia ,

IN.2 INTEGRATION TESTING MEASURE -'.'-"I'-

(I) N Y Y Y Y NI -

(2) N Y Y Y Y N1

IN.3 SYSTEM TESTING MEASURE --

(1) N Y Y Y Y N1 Note

(2) N Y Y Y Y N1 Note

i* o'

30 Automating Software Design Metrics

%%

6 0

-- '." 7

Table 5. Metric Applicability and Automatability (Part 4 of 6)
*- .° - J

METRIC REOTS --- DESIGN ---. IMPL AUTO

I .,,I AD MCC DD I
-------------------------------------- ----- --- ----------- -- --- ---
SD.1 QUANTITY OF COMMENTS N N N N Y .',

S0.2 EFFECTIVENESS OF COMMENTS .I ,I.

* (1) IN I N N NI YI
(2) N N N N Y I-
(3) N N N N Y -.-.

(4) I N N N N I
(5) N N N N Y 'I-,I

(6) I N I N N N I y
(7) N N N N Y I -"

-

SD.3 DESCRIPTIVENESS OF

IMPLEMENTATION LANGUAGE ;..I I
MEASURE Note

t(1) I N N N N Y"-,

(2) N N N N Y , ""

(3) N N N N Y I -,.
* (4) N N N N Y

(5) N N N N D3 -

(6) N N N N D 1 I
% EE.1 PERFORMANCE REOUIREMENTS IDENT. - ,',

AND ALLOCATED TO DESIGN IY Y Y N N1 Note .

EE.2 ITERATIVE PROCESSING EFFICIENCY I
(1) N N? Y Y Y N1/2 Note

(2) N N N N Y *I----_

(3) N N N Y- Y I(2-
(4) N N Y Y Y N1 "
(5) N N Y Y Y %N2 I

(6) N N N N Y Vj

(7) N N N N Y - I
(8) N N* Y N" Y* Note

(9) N D1 Y - I
()01 N IDI Y -DI

EE.3 DATA USAGE EFFICIENCY MEASURE ,-, -,

(I) N N Y Y Y Nib I
(2) N N N N Y Note

(3) N N N N Y Note

(4) N N N N Y Note

(5) N N Y Y Y Nib Note

(6) N N N Y* Y Y2" Note

(7) N N N Y- Y Y2 Note

On The Development, Use, and Automation of Design Metrics 31

Pj:.

r..-.:..,.:,

j,,,,

Table 5. Metric Applicability and Automatability (Part 5 of 6)

• .o,' . '

METRIC REOTS I ---- DESIGN -. - IMPL f AUTO I
I AD McC 00 I I

......------------------------------ I------- --------------- --- I- I---
SE.1 STORAGE EFFICIENCY MEASURE Note " j I ot

(1) N Y V Y N Nla .

(2) N Y Y Y Y Nib A

(3) N Y* N Y- Y N3 -

(4) N N Y Y Y NI

(5) N Y Y Y Y N3 I
(6) N N N Y' Y N3 "

(7) N N N N Y .
(8) N N N N D1

(9) N - D D1 - I l
(10) I N D 1 - D i- I
(11) N N N N D 1

AC.1 ACCESS CONTROL CHECKLIST Note

(I) Y Y Y Y Y N3 .

(2) Y Y Y Y Y N3

(3) Y Y Y Y Y N3. 0
AA.1 ACCESS AUDIT CHECKLIST NoteI.I..I.Not

(1) Y Y Y Y Y N3 ,.I. 1N3.
(2) Y Y Y Y Y N3 I

OP.1 OPERABILITY CHECKLIST % I I
(1) Y Y Y Y Y N3 I
(2) Y Y Y Y Y N3 •

(3) Y Y Y Y Y N3 I
(4) N N N N Y ,

(5) N Y N Y Y N3 Note

(6) N Y Y Y Y N3 -"

(7) N Y Y Y Y N3 .
TN.1 TRAINING CHECKLIST I-

(1) N Y* N Y' Y N3 Note

(2) N Y, N Y* Y N3 Note

(3) N Y Y Y Y N3 .

CM.1 USER INPUT INTERFACE MEASURE I -,I,,

(1) N N Y Y Y Nla-

(2) N N Y Y Y Nia*I
(3) N N Y Y Y Nib I

(4) N Y Y Y Y N3 I
(5) N N Y Y Y N3 %

(6) Y Y Y Y Y N3 I

32 Automating Software Design Metrics

%

.". ,:...:..

%- % -. . .

.:::....

777

Table 5. Metric Applicability and Automatability. (Part 6 of 6)

*METRIC IREOTS I- --- DESIGN - --- IIMPL IAUTO
I I AD MCC DDO

*--- ------------------------- ------- --------------- ---------
CM.2 USER OUTPUT INTERFACE MEASURE II I I

(1) j Y Y Y Y V N3

(2) I N Y Y "' Y " N3
(3) I N I N Y Y ~ Y " N3 I
(4) I N I N Y Y Y Nla I

(5 N I N Y Y Y' N3 I
(6) I N I N Y V Y' N3 I '

(7) I I Y Y Y N3
%SS.1 SOFTWARE SYSTEM INDEPENDENCE II I I

(1) N I N Y Y Y~ INia

(2) I N I N Y Y Y Ni

(3) I N D 3 D 31 I
-. (4) I N D 3 D 3 -

MI. 1 MACHINE INDEPENDENCE MEASURE II I
(1) N N7 Y Y? Y jN3 Note
(2) I N I N? Y V Y IN1/3INote

*(3) I N I N N Y YIN3 I
(4) f N I N N Y Y~ N3

CC.1 COMMUNICATIONS COMMONALITY I II I
(1) Y f N N N I N I
(2) I N Y Y Y I Y N3

(3) I N I Y Y Y I Y N3

(4 N Y Y "' V Y 1N3 I
DC.1 DATA COMMONALITY CHECKLIST II I I

(1) Y N N N I NI
(2) I N I Y V Y Y 1N3 I
(3) I N I Y Y Y I Y N3

CO.! HALSTEAD'S MEASURE (LENGTH) I N j N Y I Y jY1

MCCABE'S CYCLOMATIC COMPLEXITY I N Y Y V 1 7

HALSTEAD'S METRICSI II I I
Number of distinct operators I N I Y Y Y IY1

0Number of distinct operands I N I Y Y I Y Y1

Number of total operators I N Y Y I Y IY1
Number of total operands I N I Y Y Y I i
Vocabulary I N Y Y I Y IYI

Length I N Y Y V VI

Difficulty (1/Length) I N I Y V Y1

-. Volume I N I Y Y I V i 0
Effort I N I Y Y Y VI

Program level I N I Y Y Y I I

Language level I N I Y Y I IYI

On The Development, Use, and Automation of Design Metrics 33

% % %
...... 0..................

ET.3(2,3) These metrics ask whether or not all loop and multiple transfer
index parameters and subscripts are range checked before use. A higher level
implementation language may have these capabilities.

SI.1(3) This metric asks whether or not module processing is dependent on
prior processing. Evaluation of it depends on understanding the content of
the module, hence the "N3". The "Y2*" is to indicate that reuse of local var-
iables could be checked by interpreting tab statements, but is a difficult
job. Though the no memory principle is usually a good one to follow, there
are cases, like state machines and filters, where it is not the method of .
choice.

SI.1(6,7) These metrics have to do with database characteristics. DARTS
could be modified to support them by addition of data structures. The number
of variables could be used for (6), the size of the database.

-.: CSI.2 This metric asks whether or not a structured language or preprocessor .
is used. As described, it is for the implementation phase. An analog could
be developed for the design subphases. j

* SI.3 This metric measures data and control flow complexity. It depends on .1
the feasibility of deriving a graph representation from the DARTS database.

SI.4(1-4,6) These metrics measure coding simplicity using various methods.
Analogs could be developed for the design subphases.

r.'%J

EX.2(3) This metric is the percent of speed capacity uncommitted. Though
[McC 79) show its application during implementation, it should be included in .

the design phase, since tight machine resources have a dramatic effect on -
design.

SD.1 This metric measures the quantity of comments. An analog could be
developed for the design subphases.

SD.2 This metric measures the effectiveness of comments. An analog could
be developed for the design subphases.

SD.3 This metric measures the descriptiveness of the implementation lan-
guage. An analog could be developed for the design subphases.

r. EE.l This metric asks whether or not the performance requirements are
..-. allocated to the design. If a document existed which tagged each requirement

(say by paragraph number), the tags could be included in the requirement and L.-
design diagrams. A metric could then be devised, but it would have the prob-
lem of quantifying completeness, since the requirements to des4,:- allocation e
may be many-to-one, one-to-one, or one-to-many.

• %..

34 Automating Software Design Metrics

0

0 S
% %.

I* 'J. g, *..'

.

:.. : ..

""- EE.2(l) This metric asks what proportion of non-loop-dependent computa- -

-'-[tions are in loops. Some higher level language optimizing compilers will min- . .

imize this. There may be practical exceptions to this principle.

EE.2(8) This metric asks whether or not the storage facility is used effi-
ciently. The definition given is too vague for an evaluation to be made,
depending on "evaluation of the utility of the storage facility". Also, the
table shows this in the design phase, but not in implementation, which is
probably a mistake.

EE.3(2,3,4) These are data usage efficiency measures for the implementa- --

tion. Analogs could be developed for the detailed design subphase. A higher
level language with strong typing might detect/prohibit mixed mode
expressions.

EE.3(5) This definition is not detailed enough for an evaluation to be --
made.

EE.3(6,7) These metrics ask about the numbers of static and dynamic data
items. They may be applicable to the detailed design subphase, as well as
implementation. The variables could be partitioned into those which are
changed and those which are not, by interpreting the tab statements. The met-
tic might be more suitably measured in a tool based on a compiler, since a '. ..

compiler typically processes this kind of semantic information. It might be
suitable for a PDL-like design tool.

SE.I This metric is concerned with storage efficiency. It depends on a
variable having a locus of definition, which might or might not be true in a
design representation. If it is, the information necessary is present, but
the metric requires knowledge of the meaning of the variables, and so, is not
automatable.

AC.l and AA.l are further examples where the metric registers whether or
not a particular functional cabability is present in the system.

OP.l(5), TN.I(1,2) These metrics deal with job set up and tear down proce-
dures, and training material. Some of the specification called for in these
two categories should start during design, so that user feedback may be
obtained to influence design.

MI.l(l) This metric measures machine independence in terms of whether the
programming language used is available on other machines. If the implementa-
tion language is chosen early in the lifecycle, the metric could be measured
during the design phase.

On The Development, Use, and Automation of Design Metrics 35

%0

. % .%.. %. .

.' .' '. - .. .- - ., , , . • - _% - . • - " - .- ... •, - ,., -, . ..- ' • '. '. . - . _" " . a .."

:-';- & .. '-.--'-;"¢ .- ? ...:.'' .-.. ?) ".'-;-.)..-'i-''-<.-._.-.. b;bs..-[. -;'.'- .

... - ----. - -° - - °- - -* .-- 2 ---- . . .:.I-

1 71-I

MI.l(2) This metric has to do with limiting the number of I/O references
in a module. "I/O reference" is not defined specifically enough to enable an
evaluation.

---[

2.2.6 Metric Automation Potential Summary

The totals for each category used in assessing automation potential are U
shown in Table 6 for the McCall metrics. The McCabe and Halstead metrics are
considered separately, below. At of roughly 100 McCall metric components,
about 25% (29) are good prospects for measuring in DARTS (the YO, Yl, Nla and
Y2 categories)..

Table 6. Automation Summary for McCall Metrics
-'-.

Category Total

YO 5
* Yl 8

Nla 14
Nla* 4

5 '" Nlb 4

Nl 8
Y2 2
N2 1
N3 57

.'is"

There are a number of metrics which have as their values the proportion of
A modules which conform to a set of conventions: naming, standard represen-

, -..- tation for procedures, data, etc. They are mostly in the N3 category. The
conventions themselves are left unspecified, since different ones may be suit-
able for different projects. A design tool would clearly be able to check for
adherence to a particular convention.

Another class of metrics is composed of what are really checklist items,
-. like making sure that all device errors are handled. They make up the largest

part of the N3 category. The metric depends on an assertion by a person that
a module meets a certain criterion. This checklist capability is a function

" separable from design representation and metric measurement. We should con-
sider whether a tool, or part of a unified tool package, would be of use in 0

this area. It could act as a prompter for the system developers, and a quali-
ty assurance audit tool. The metrics in this class could be measured from it.

36 Automating Software Design Metrics

-2..%

.1 '" ' V ' , ; " " -. ' . ' .,,_- ,--' '-.. .."- ," . - ' .. " ' " " * . ." .- .- " • ."

A few other metrics have the purpose of promoting conservative code prac-
tice assuming that the final Code will be in assembler language, such as loop
index range checking. As indicated in the notes for the table, they might be
unnecessary if a high level language were used.

The McCabe cyclomatic complexity metric may certainly be automated, since
the DARTS primitives represent the structure programming control structures.

The Halstead metrics may all be automated, since they all depend on the
basic counts of operators and operands, easily captured from many forms of
design media.

The McCabe and Halstead metrics were chosen for use in the other tasks of
the project. Many of the McCall metrics have some components which are suit-
able for automation in DARTS, and some which are not; which makes them of
dubious use as a demonstration of automatic measurement. The McCabe and Hal-..
stead metrics present a coherent picture of the complexity of the software,
which is one of the McCall metrics. In addition, the Halstead metrics have

*. j
- been shown to be of some use in predicting planning parameters.

2.3 DESIGN METRICS AND DARTS .

The next sections present the software requirements and design for the
McCabe and Halstead metric implementation in-the CSDL design-aid tool DARTS.

2.3.1 McCabe's Cyclomatic Complexity Metric

V'.'%

hThis section includes the requirements and detailed design specification
for the implementation of McCabe's cyclomatic complexity metric McC 76] in
DARTS.

2.3.1.1 Requirements

The McCabe cyclomatic complexity metric shall be implemented in DARTS.
wThe McCabe module shall be in PL/1, fit into the existing software structure,

use the existing database access routines, and use other existing utility rou-
tines where feasible. The user shall specify the top node and depth of the
subtree to be measured. The output shall show which subtree was analyzed, and
include the metric values for each distinct module and the total for the spec-
ified subtree.

*Special Processing: DARTS uses a hierarchical representation technique
which allows a user to truncate trees at any level. This is useful when it is

On The Development, Use, and Automation of Design Metrics 37
% %

9--
..

advantageous to hide some details of a design to show only the higher levels.
Truncation often leaves ambiguous iterator and selector nodes (decision nodes
with no offspring). In these cases, if the tab for the iterator or selector
has predicates in it, processing shall be as normal. If the tab has no predi- .
cates, an iterator shall be assumed to have a single simple predicate to ter- "
minate the loop. A selector shall be assumed to have a single simple
predicate used to distinguish between two offspring (an IF-THEN-ELSE).

2.3.1.2 The DARTS Implementation of McCabe's Metric

Cyclomatic complexity may be measured from a DARTS representation of a ..iI
design, since the DARTS primitives represent control flow. The definition
based on counting the binary predicates is the most natural one to implement,
since the non-real-time control structures in DARTS are the same as those used -

fer structured programming.

The following figures show the DARTS tree representations of the common
control structure primitives and explain their graph equivalents. The trees d.

for component and exchange nodes are not shown since they are just single
nodes: they do not represent any control structure. 1. .

The coordinator (Figure 2) represents parallel execution of two or more
processes, so the equivalent graph would include each process as a separate
unconnected component. As discussed below, the graph medium does not allow
representation of control interactions brought about by timing relations and-.
data exchanges, so coordinators will be treated as sequencers for this meas-
urement.

The DARTS iterator (Figure 3) can be used to represent any kind of loop, .-

including FOR, WHILE, or UNTIL loops. It may have one of two graph equiv-
alents depending on whether the loop termination test occurs at the beginning
or end of the loop. Any number of steps may occur inside the loop.

The selector (Figure 4) is used to select one from a group of alterna-
tives. It may represent an IF, IF-THEN-ELSE, or CASE construct. If n-l pred- -
icates are specified, an nth selection may be chosen if they are all false;
but there need not be an nth selection. Its graph would include a multi-way
branch or a series of nested binary branches.

The sequencer (Figure 5) just ties together nodes which are executed one
after the other. It. graph equivalent is linear. Any number of steps may .

occur in sequence. * ,

38 Automating Software Design Metrics

0

ILa

.

;. - ".", ."z"v"- . •.''.''-...•..-.'..-.. .-. .- "-. .- -..""""..: ' 'J•J' ' L q' % ' i : k
'

r PL F,IN AIr-Pr.r

FI f Ell A I- II 1 "C! I i I l fi : m 3 on: .

OWNERl Is~ ?4IIUU~x ALL GEULILi1rOrS

0 Figure 2. DARTS Tree for Coordinator0

nM~~~rN AI A.

OWNERI is ?IMSIIU)O ALL CLNLnxniONS

* Figure 3. DARTS Tree for Iterator

*On The Development, Use, and Automation of Design Metrics 39

.-.
& %',4*, 0

(1771 K31N AIMS PAC13 I

IAornwxf (iIxI-ll 33UTO ilLc 12:1::7
I 1XIAIA~.: IS 11CCAUB TIMINOVEl: a
O (WNERI Is NhISIIU(j ALL GLNEIIATIONS "

-5-

7 %

l(7.111.f .Fr AI PAGEC'IO IEETOd

)A1'A:'A3I'~~I .13MCAIHTPNN

Figure 4. DARTS Tree for Seqecr

40 AtomaingSoftare esin Meric

r0
% %%

% .5.% %

% %5

The rest of this section details how the metric is implemented in DARTS,
* . ensuring that the criteria are met for application of the simplified defi-

nition based on counting decisions. That is, that the control graph for the
DARTS tree is connected, planar, and has a single entry and exit. Points con-
sidered are:

1. the applicability of the metric to multi-process systems, and systems .
* using the real-time data exchange construct,

'2. the influence on the metric of the statements of the tab language,

3. how the number of modules in a system will be determined, 1
4. and how predicates will be counted for each type of DARTS node.

The cyclomatic complexity metric is not intended to measure complexity due
-. " to real-time aspects of a problem. Another metric must be used to cover this

S oarea. The real-time constructs, coordinator and exchange nodes, may have
predicates implied in their implementation, just as the implementation of

Ssequential control may; but to the designer, they are primitives. Exchange
* nodes are treated as component nodes and coordinator nodes are treated as

sequencer nodes. Since the complexity due to timing requirements is not
reflected in this metric, this is a reasonable approximation. See the dis-
cussion of BLK and SEG statements, below, for causing the processes under a
coordinator to be handled as separate modules.

The general scheme for measuring cyclomatic complexity is to traverse a
user-specified subtree, accumulating the number of decisions and simple predi-
cates for each node. The number of decisions plus one yields the lower bound
for the interval described by Myers, and the number of simple predicates plus
one gives the upper bound. The value of the metric for each module encount-
ered is printed, as well as the total for the subtree specified.

A software design in DARTS can be either abstract or detailed. The level
S " of detail is rereesented by using both uninterpreted and interpreted node .-

forms. Uninterpreted nodes are those which do not contain any primitive oper-
ators such as arithmetical or logical operators in a special tab area beneath
the node (see example DARTS trees in the Appendices). Generally, nodes

5" appearing near the root node of a process architecture tree are more likely to -
represent uninterpreted functions. Interpreted nodes are those which contain
primitives such as arithmetic or logical operators in the tab area. These tab
statements are used to indicate actions which occur at tne node, conditions
under which control transfers are made, or to further define the node.

-"The absence or presence of these tab statements makes a significant muif- "
ference in calculating the McCabe metric values, so, two methods are used.
For nodes without tab statements, the entire user-specified subtree is consid-

- On Thu Development, Use, and Automation of Design Metrics 41
"nf

d Vs %

% %

"." sftar dsin n ARS anbeethr bsrat r etild.Th lve %-
-'-'" o deailis epreentd b usng oth ninerpete an intrprtednod i.°-L

- ered as one module, and the type of node and number of offspring determine the
number of decisions and predicates. This method is useful for high-level

" - designs, where the simple predicates in terms of actual variables and the
software structure in terms of modules are often not known. For nodes with

" tab statements, the statements are inspected and used to determine the number
* of modules and the number of predicates. Details on the recognition of mod-
.* ules and the counting of predicates follow.

4. .

Modules in DARTS are indicated by two statements in tabs: BLK and SEG.
Each statement assigns a name to a subtree. The SEG statement defines the
subtree as a subroutine which may be invoked by an INV statement in a tab in
another part of the system tree. (Without SEGs, commonly used subtrees must

" be repeated at each point of use).

When a BLK or SEG statement is present as the first statement in the tab,
the subtree for that node is recognized as a module, and a separate count of
decisions and predicates is made for it. Its metric value interval is shown
separately in the output. Since a coordinator node is handled as if it were a
sequencer, the processes under it must have BLK or SEG statements in their
tabs if the processes are to be handled as separate modules.

A list of the modules invoked is compiled, and an output line referencing
a footnote is output if the corresponding SEG is not present in the specified
subtree. In this case, the totals shown for the user-specified. subtree are
incorrect, since the values for the missing SEGs are not included.

In the following specification for how the numbers of decisions and predi-
cates are determined, "simple predicate" is used to indicate what McCabe calls 0
a predicate, and "tab predicate" is used for a DARTS tab predicate, which may
actually be a conjunction of several simple predicates.

For nodes without tab statements, each iterator node is assumed to have a
single decision to terminate the loop. Each selector node is assumed to have

a decision to reach each of its offspring except the last (the ELSE branch),
-'- so the number of decisions is the number of offspring minus one. If there are

no offspring, the selector is assumed to have a single decision used to dis-
tinguish between two offspring (an IF-THEN-ELSE). All other node types have *-

zero decisions. For all node types, the number of predicates is the same as
the number of decisions.

For nodes with tab statements, all node types except iterators and selec-
tors again have zero decisions and zero predicates.

Iterator nodes may or may not have a tab predicate specified in the tab
text. Those with no tab predicate will be assumed to have a single unstated
decision/predicate for terminating the loop, as for nodes without tab state-
ments. For those with a tab predicate, the number of decisions is still one,

42 Automating Software Design Metrics

'6p

LA%

*
*1

but the number of simple predicates is the number of ANDs in the first tab
predicate plus one. (The number of ANDs is one less than the number of simple
predicates which they join; and ORs are not allowed). Since iterators are
used to represent a number of different kinds of loops, including FORs, WHILEs
and UNTILs, this method corresponds to mechanizing any kind of loop as a
series of nested IF-THEN-ELSEs.

Selector nodes also may or may not have tab predicates specified in the
tab statements. They are used to represent constructs such as IF-THEN-ELSE
and CASE, so more than one tab predicate may be present. Those with no tab
predicate will be treated as if there were no tab statements. For those with
tab predicates, the number of decisions is the same as for selectors without '.

tab statements. The number of simple predicates in each tab predicate is
determined as it is for iterators, and the sum for all the tab predicates is
the number of simple predicates for the node. Again, this reflects the mecha-
nization of any selector as a series of nested IF-THEN-ELSEs.

A tab statement is recognized as a predicate according to the specifica-
tions in [CSDL82]. That is, if the statement does not begin with one of the
reserved words (BLK, SEG, etc.), and it contains one of the relational opera-
tors EQ, NE, GT, GE, LT, or LE. The tab statement TRUE is also recognized as
a predicate. Redundant or degenerate simple predicates, such as "X GT 3 AND X
GT 3" or "TRUE AND X GT 3" are not detected. Handling of variable names which

,. are reserved words is undefined.

2.3.2 Halstead's Software Science Metrics

This section specifies how the Halstead counting method, and the associ- V--,,-,
ated metric calculations are implemented in DARTS to assess the quality of
software designs. It is expected that this metric analysis will provide
designers and managers with useful feedback during software development.

2.3.2.1 Requirements

The Halstead parameters shown in Table 2 shall be measured in DARTS.
, Operators and operands shall be identified in the DARTS medium and a counting

method shall be defined which is consistent with the definitions provided in
by Halstead [Hal 77]. The Halstead module shall be written in PL/I, fit into

* the existing DARTS software structure, use the existing database access rou-
tines, and use other existing utility routines where feasible. The user shall
specify the top node and depth of the subtree for which the parameters are to
be measured, and the counting method to be used. The output shall show which
subtree was measured, which counting method was used, and the parameter values
for the specified subtree.

0 5
: : . . -

. .

On The Development, Use, and Automation of Design Metrics 43

__ 0

.%
% %

i .9 : v ; ., - ., . v , ,v- . . - ; . . - . -,- . - , ' . .- , . . . , . .

'.O

2.3.2.2 The DARTS Implementation of Halstead's Metrics

The following discussion defines the identification of operators and oper-
ands and a method for counting their occurrences in a software design repres-
ented as a DARTS tree, according to the generalized technique developed in
Section 2.2.3.2. This technique evolved from prior work [Szu 80] and [Szu
81]. The DARTS Halstead Metric capability was implemented in three evolution- Ii
ary forms, Simple, Uninterpreted, and Interpreted. For this project, only the

*Interpreted form is discussed.

Since a software design in DARTS can be either abstract or detailed, the
technique used to identify operators and operands assumes that a DARTS tree
has both uninterpreted and interpreted node forms. Uninterpreted nodes are
those which do not contain any primitive operators such as arithmetical or
logical operators in the tab. Generally, nodes appearing near the root node
of a process architecture tree are more likely to represent uninterpreted
functions. These nodes are generally identified as unique operators and con- .
tribute a count of one to each of the basic operator equations.

Interpreted nodes are those which contain primitives such as arithmetic or
logical operators in the tab field. Control qualifiers (e.g., if, then, else,

0.. etc.) are also considered primitives, as are semicolons used for punctuation.
A list of all primitive operators which are interpreted by the DARTS Halstead -
module is shown in Table 7.

Table 7. DARTS Software Science Operator Primitives.

sin if and dur -'= -> random
cos then or imt * < / negexp

tan else eq loc /* poisson
arcsin call ne var & <> normal
arccos while ge bgn <= , blk
arctan until gt end ** >=

log repeat le mod -

log2 case of it inv + =>

logl print seg = -<

The Halstead operands in a DARTS design are those data items appearing in
the tab field which are not operators. The Potential Volume (V*) is deter-
mined by evaluating f* as the number of data items on the INDATA (input
data), and OUTDATA (output data) lists of the top node of the tree under meas-
urement.•

44 Automating Software Design Metrics

% %* %1 ::>%

%0

2.3.2.2.1 SPECIAL PROCESSING: DARTS uses a hierarchical representation tech-
nique which allows a user to truncate trees at any level. This is useful when .

it is advantageous to hide some details of a design to show only the higher
levels. Truncation often leaves ambiguous decision nodes (i.e., decision
nodes with no offspring). When this occurs, the node is redefined to be a
unique uninterpreted functional node.

2.4 USING THE DARTS DESIGN METRICS

*Preceding sections of this report have identified metrics which purport to
determine the quality of software designs. These metrics can, at this time,
be used as comparators between functionally equivalent but different designs
but not as yardstick measures on designs in isolation. Several articles in

the literature have included examples of good programming style contrasted
with implementations which lack proper organization, structure, and clarity.
In some cases, the examples already contain relevant metric data, though in
general, the data is derived manually from the code. This section is an
attempt to provide some empirical data to support the utility of automated

nI nu th c tw ostio s to toll w ,ct h t e s at lee an Tchab ms etrics as n" '

design-aids and metrics by applying the metrics to designs encoded in the

DARTS database.4

Inel te tw nction s ot en fol owe b go th esad an od e Mc a e m er c is o as"

implemented in DARTS, are used to evaluate some simple and complex designs
n dwhich are encoded in the DARTS data-base.

2.4.1 Simple Examples

In this section, two examples have been taken from the literature [Ker '

74]. These examples are part of the CACM collection, "programming style", .

containing examples and counterexamples. They were carefully chosen by the
authors to depict obvious differences between good and bad code. The examples - -

chosen were also evaluated by the Halstead metric in an article by Gordon [Gor
79]. The results of DARTS Halstead analysis and Gordon's are compared. In

" taddition, the McCabe Cyclomatic Complexity is also calculated.

* 2.4.1.1 CACM Example 14a

This simple PL/I billing program was translated into a DARTS detailed
design, then analyzed by the DARTS Halstead and McCabe metrics. The DARTS

grepresentatin of the program can be found in Section B.1 of Appendix B.
Figure 6 shows the PL/I code and Gordon's [Gor 79] Halstead metric analysis.
Table 8 shows the DARTS Halstead and McCabe metric analysis printout tas -
for comparison.

On The Development, Use, and Automation of Design Metrics 45

.

%

whic ar enc ded in
he D RTS dat -bas .

, .-
2.4. Sim le xamp es

. -.-..

In his sec ion tw
ex mpl s h ve een tak n f om he ite atu e [er,

-,, -
74] . The e ex mpl
s a e pa t o th CAC co lec ion, "pr gra ming sty e"•.

.

*- % 5.... .

".*.

.. V .-
*

This~~~~
~ ~ . '* * .- . . .

si
p e P /:il ng p o r m w s t a sl t d i t A T de ai ed-

.--

-U'...-
..

IF QTY > 10
* -THEN IF QTY > 200

THEN IF QTY > =500
THEN BILL A=BILL A + 1.00;
ELSE BILL A=BILL A + 0.50;

ELSE;

ELSE BILL A=0.00.

The code of Example 14A. -,

Number r1 r N1 N.2 V I/L E "0'

14A 8 8 21 14 140 7.00 980

Figure 6. PL/I Code and Gordon's Metric Data - CACM 14a

2.4.1.2 CACM Example 14b

This simple PL/I billing program was translated into a DARTS detailed
design, then analyzed by the DARTS metrics. The DARTS representation of the
program can be found in Section B.2 of Appendix B. Figure 7 shows the PL/I
code and Gordon's [Gor 79] Halstead metric analysis. Table 9 shows the DARTS
Halstead and McCabe metric analysis printout tables for comparison.

r.
,-U...,,

, .

.. F.r4r%. r4

!.''€ 46 Automating Software Design Metrics-,'

U..' ., , * U.'-I\U."

Table 8. DARTS Halstead and McCabe Analysis -CACN 14a

r85.. m 0lESIS-AUS TOPNOW 50:5 PAWE I
FOR RAL-11IU EVSTWO ALL MEUATIN SATE: 08S UP? 1965

IHALSTEAD DAUC TABASE 2S: 11= TIM 3 :720
1611100nVO: DflEFWSII USER 13a £31392

IF 3 MlY 3

*Q 3 *05ILLA S*2 1.00 1
*4 0.50 1

ELSE 3 0.00 1

OISFD~T OPERATORS a

TOTAL OPERATORS 211

TOTAL OeRm 14

OESIO Loom35

PENmONT OFF-3.41 k

POTISMAL VOLU 4 755

DlSUM LEVEL 0.034 '

ESTIMTEO fhSW LEVEL 0.143

DETELLIUCEcf= I 20.0m00

L~AE LEVEL 0.161

:.qLESTIMTED LMMIWE LEVEL Z.&57

EPPUSY4122.074

ESTIMATED EFFORT 960.0000

0500. OSDIU-AISS X0POE13 PA.E 3 -w

FOR REA-TINK SYST'JU ALL GSEEATIOIS SATE: 25 MIS 1%35
1100206 "FT DATMa IS: TIM TUE: 23A0:20

USER Is$ A.1,192
P%

cME INTERVAL.1'
SMDLE 1000 16215Z10 OPREDICTESLODU10WE WSA.

3 3 5 4 40

- TOTAL FOR SUBSTIN

AOn The Development, Use, and Automation of Design Metrics 47

%

%
0%

4.-- -... '.4. - 1 -

i!.>. ..,-_

. .°.

IF QTY > =500
THEN BILL A-BILL A + 1.00;
ELSE IF QTY > 200 .

THEN BILL A-BILL A + 0.50;

ELSE IF QTY < =10
THEN BILL A0.00;

The code of Example 14B.

2 Number ? I 2 N 1 N2 V 1/t E

14B 9 8 19 14 135 7.88 1062 O

Figure 7. PL/I Code and Gordon's Metric Data - CACK 14b

2.4.1.3 CACX Example 15a

This simple PL/I program was translated into a DARTS detailed design,
then analyzed by the DARTS metrics. The DARTS representation of the program
can be found in Sectic.n B.3 of Appendix B. Figure 8 shows the PL/I code and
Gordon's [Gor 79] Halstead metric analysis. Table 10 shows the DARTS Halstead
and McCabe metric analysis printout tables for comparison.

4,..w.

... -4.

' . 48 Automating Software Design Metrics
>~~. %.4.. .

,,,.,.,. 4..

4.",,,

4f ,% V . %. ,+ % % % % % . + ° . - - ' .° ". • .,- . , - . -. o, _+ ," . .. - . . .+.
.- - °'(,,, .% .% ,.48 . .Au o at nof w rDs g Metric ..-. , . . -.• . . .

'4'.... ,, '.' A4
, 4+ " " ,. t , r . ' " ,' . b - " .' . ' ' ' + '- . " " " •' " ' " " '- " - " - - " . ." - .

, . - ,','~ y 'W • ", -% . ", ",". % , .' ,% ". ,%'..'.'%', W',w',v .%' ' . ,,.., ',,,",, .'." " - °+. .%.,-"

6

Table 9. DAR~TS Halstead and McCabe Analysis -CACK 14b ~V

CSOL Ow DESIGN-AIDS TOPtIODE 10:4 PAUt I
FOR REAL-TIM SYSTEMS ALL StMEATIONS OATE: SO MANt 1963

CSTI METHD: INTERPRETED USER IS: A.JR1392

OMEATOS COUN4T OPtRANDS COURT
IF 3 qv3
at 1 500 1
THEN 3 BILLA SEQ 3 1 .001

* 2 2001
3 0.501

- ELSE 2 101 -.

S T 1 0.00
Li I

919 ia 17

DISTINCT OPERATORS 90

DISTINCT OPtRAHDS
%TOTAL OPERATORS 19

TOTAL OPERANDS 10

VOCABULARY 17

DESIGN LENGTH 33

ESTIMATED LINTH SE .5

PERCENT OFF -39.18

DESIGN VOLUNL 134-686 ,%.4%-

POTENTIAL VOL6.9E 4.755

0ESIGN LEVEL 0. 035

ESTIMATED DESIGN LEVEL 0.127 I

Z ILLIGVICE CONTENT 17.128
LANGUAGE LEVEL 0. 1"

ESTIMATED EFFORT 1062.229

EF FORT 32.4

CSm. Ow mKsmI-AZ TOENOW zu:s PAGE0
FOR RAL-TwI SYSTEMS ALL UEAISDATE: 23 ALM 1963 4..
HMimi UKTUI DATABASE ISs TISA TIM: 13t40t40

USER IS. A.J5139

MCCAB1 INTERVA

MOSUC Now1UCISISNS IPPDA=TU LOWER 801M UPPER AL0"s

% %

% .^01b

p.%
6t' . ,%. -- ' %-

% L %.. .

I&,V *L

-I LX>= Y
THEN IF Y >=Z;

THEN SMALL Z;
ELSE SMALL =Y;

ELSE IF X > =Z

THEN SMALL =Z;

ELSE SMALL X;

The code of Example I SA

Number 711 77 2 2 i

15A 6 4 20 14 113 10.50 1186

Figure 8. PL/I Code and Gordon's metric Data -CACK 15a

2.4.1.4 CACX Example 15b

This simple PL/I program was translated into a DARTS detailed design,
then analyzed by the DARTS metrics. The DARTS representation of the program
can be found in Section B.4 of Appendix B. Figure 9 shows the PL/I code and
Gordon's (Gor 79) Halstead metric analysis. Table 11 shows the DARTS Halstead
and McCabe metric analysis printout tables for comparison.

* 0

*50 Automating Software Design Metrics
I 0

4.e %
P~~ or 1"ow

. ..+_+. .-*;N"" - - -*,

Table 10. DARTS Halstead and McCabe Analysis - CACM 15a

kilL 00 uusZOO-AXO IOPNOE lost PAWE 1I
IFO REAL-TIME SYSTUG ALL GE ERATIONS DATE: 08 SEPT 1963
HALSTEAD IETRIC DATABASE XS TISA IM"ES 14.36:26
1COUTINIB lNETOms I1WETEE USER ISt AJRl 39

OPERATORS 8I1W OPERANDS CO,-

IF 3 X3
GE 3 Y
TIN 3 Z 4

6Q 4 SALL 4
3 4--,

EILM 3

6 to 1

0SSIC? WPERATO 6

DISTD= aPEIES 4-

TOTAL OPERATOIRS 20

MOAL OPERAMS 14

VOCAaLAIY 10

DESIGN Loam 34

ESITMTE USTI U.5

0PERCENT OFF 30.85

DESIGN VOLUME 122.966

POTENTIAL. VOUM. t.0,

"" G LEVEL 0.018

ESTIMATED 0ESI164 LEVEL 0.095

INTLUREJI CUTEN 10.757

LANGUAGE LEVEL 0.035

ESTIMATED LANIGE LEVEL 1.024 .- ,%-'

EFFOT 6378.348

EST-MTED EFFOfrT Ila. 928

CSL u OESEUI-AZMi 7664006 10:2 PANE 1
F H AL-TIME 51519 ALL ENERATIOS DATE: U3 A 1963

MAD IUTw DATABASE 13* TINA TW: 28:60:0
A" IER ISs AJRI139

MCMAE DIERVAL. *l

MODULE Nams GOWISIO SP CA1 LOWE1R 9 UPPER BOD ,

X SXLA* 'THNOREIu"U Ty 3 3 4

Tut FOR USSYS1E S
is X LARGERTHAN OR EQUAL TO Y 3

,%

On The Development, Use, and Automation of Design Metrics 51

0% 0.' :

W7: ~ W".'IF. J

SMALL X;
IF Y < SMALL

THEN SMALL = Y;

IF Z < SMALL

THEN SMALL = Z; ,

The code of Example 15B.

Number N71 1 1 N2 V I/L E

15B 5 4 12 10 70 6.25 436

Figure 9. PL/I Code and Gordon's Metric Data - CACM 15b

2.4.1.5 Analysis of the Simple Examples Experiment

The subjective evaluation by the authors of the programs [Ker 74) suggests
that Example 14a is better than Example 14b, and Example 15b is better than
Example 15a. These findings were reinforced by Gordon's manual application of
the Halstead metrics [Gor 79). The automated DARTS Halstead analysis of these ,
same examples reproduced Gordon's data, and, in addition, the DARTS McCabe
metric verified the results in one of the two cases. In the case of Example
14, the metric values were the same. By examining the control structure of
these programs, it is obvious that the McCabe metric cannot distinguish
between these two similar designs at the level of detail presented. '""

2.4.2 Complex Examples

In this section, the metrics described in Section 2.3 are applied to exam- .

ple real-time system designs. In order to illustrate the ability of the met-
rics to distinguish between designs of differing quality, two candidate design
solutions to a complex problem are introduced. The designs are expressed _
using the automated design medium of DARTS, and the metrics are applied auto-

3..JOmatically. -.

52 Automating Software Design Metrics

. . 3'.

. . .5 . . - *o " * ...,. -,...... .. >. i.:.-., -..,::... . ..,,., . N-.%*% 3-,-.,

Table 11. DARTS Halstead and McCabe Analysis- CACM 15b

CSOL Im OSZU-AZD8 IOPHOWN IMt PACE I
FOR MAL-INE SYST013 ALL GhERATIGNS DATE: 08 SEPT 1983
H ALSTEAD IEC DATABASE S 18 TIM TI: MUM8:S
ICOUNTDU HETHOD: XNTUE10ATED USER M AJRX392I

OPERATORS COUT OPERANDS COUNT

EQ 3 SALL S
3 X -

IF a Y 2
LT a z 2

THEN a
" 1* , 10

'SDT OPIRATORS S

DISTINCT OPERANDS 4

TOTAL OPERATOIR 12

TOTAL OPRANDS6 10

VOCAISLAE 9

OESIM LEH 22

ESTED L.3T 19.6

PaRaOUE0FF 10.870

POEIALE 0OLI .000

OES4. LEVEL OS 2

ESTIMATET LS L.EVEL 1. 6: 13:M:11

,,7211AT.,EFFORT"435.8;.

USER XSt £581392

%
",fheAS HUEWI UICAEZS ZSIO PDZAI I".0 E: 801 P:IR S.r.m,

IFDEAIE E*8rORTANEU"-L"S"2.2 3 3

1'oTrAL PO SEiSYSTtIN.',.
FD TIE LEUST OF 15163 VAI,8 2- 2" ."

a-% ,.

On The Development, Use, and Automation of Design Metrics 53

"_ '. ,p .-

.1 " '.%

%\

"6 m w* % ,," "." *"a " . .
. o%,% , aa a-, " " a" ,' . -• ." ' " "."-" '- ." " " ". ." ° "" " - . a """ . "'""""""" " '

," .

i o%

The following sections introduce the sample problem, present the two can-
didate designs, and apply the metrics to the designs. The section closes with
a summary.

2.4.2.1 The Experiment Controller Example

The example chosen is an experiment controller, first described by Ken-
delbaum and Madaule [Men 753, and later discussed by Chow ECho 783. The com-
puter controls a series of laboratory experiments, positioning a burette
piston prior to each experiment, and then records and analyzes sensor data
(e.g., determining solute concentration). A report is printed at the end of a
series of experiments; however, the user has a switch which causes the report
to be issued at intermediate points if desired. The detailed requirements for

'- this system are presented in Table 12, and Figure 10 is a pictorial represen-
tation of the system.

This example was selected for a variety of reasons.

* It illustrates a number of real-time design issues, including asynchro-
nous user interraction, and timer-driven cyclic behavior.

. There are two designs derived from the same requirements which can be

compared both subjectively and by the metrics.

* It is a complex, yet simply illustrated, example. , .

Each design is depicted using DARTS. Figure 11 shows the first version of
. the design, labeled Design 1, and Figure 12 shows the second version, labeled 0

Design 2. The DARTS metric analysis of these designs is discussed in the next
section.

2.4.2.2 Metric Analysis of the Experiment Controller Designs

In this section, the results of the DARTS Halstead and McCabe metric anal- °•
ysis of the Experiment Controller Example designs are presented and

discussed. 7

Design 1, as depicted in Figure 11, was analyzed using DARTS. Table 13
shows 1) the raw counts of operators and operands used to calculate the Hal-

*m stead metrics, 2) the Halstead metrics, and 3) the McCabe Cyclomatic Complexi-
6.% ty Interval.

Design 2, as depicted in Figure 12, was also analyzed using DARTS.
• ".- Table 14 shows 1) the raw counts of operators and operands used to calculate

the Halstead metrics, 2) the Halstead metrics, and 3) the McCabe Cyclomatic '.
0 Complexity Interval.

54 Automating Software Design Metrics

-. I_

.- .-- ...

Table 12. Requirements for the Experiment Controller

1. A computer system is needed to control a series of laboratory experiments (see Figure 4-1).

2. A burette step motor compresses a burette piston. Each step of the motor corresponds
to a given poured v(lume. Following each step an interrupt signal 1B is sent to the computer.

3. An electric cell sensor enables the computer to measure concentrations in a tank.

4. Experimental data are sent to the user via a printer. When the printer has finished printing a list
of data, an interrupt signal ip is sent to the computer.

5. A user switch enables the user to interrupt and obtain a status report during the experiments by
emitting a signal iu.

6. The computer system can make use of a timer to request an interrupt signal iT after a given fixed ,.-

interval.

7. Prior to performing the first experiment, an INITIALIZATION task is performed, followed by an
initial reading of the cell sensor and the MEASURE task.

8. The computer has access to a count of the number of experiments and an experiment table con- .-

taining instructions for each experiment (the initial definition of this table is not pert of the
problem).

9. For each experiment, the burette controller motor is operated for a number of steps (as determined
from the experiment table). C':

10. Next a series of measurements is performed at fixed time intervals (as determined from the experi-
ment table), by starting the timer, reading the sensor when the timer interrupt occurs, and per-
forming the MEASURE task. The series is terminated after a fixed number of measurements (as
determined from the experiment table).

11. After each measurement, if the user has sert the signal iu, the COMPUTE and LIST tasks are per-
formed, and a status report is sent to the printer.

12. After each experiment, it is determined whether the series of experiments is finished. If not,
steps 9 through 11 above are repeated. If so, the COMPUTE and LIST tasks are performed, and
the final report is sent to the printer. -

13. The report cannot be sent to the printer if the printer is already in use (it is delayed until the
printer is available).

14. While a user print request is in execution, additional user print requests are ignored. -'. -

On The Development, Use, and Automation of Design Metrics 55

-77 "..'.'.

S... ... ,-.-'
N .0%

-.- TIMER

MOTOR

-OUTPUT

- REGISTER.'-'-PISTON INTERRUP

BURETT- - _JNPJ

REGISTER0

- USE R'S SWITCH

Figure 10. Experiment Controller System

For both of these designs, the minimum number of unique operands is 11.
This is derived from counting the input and output data items at the top of
each design tree. This information is obtained from the data-flow tables for
each of the designs, which appear in Appendix E. As Table 13 and Table 14
show, the important complexity metrics of Halstead's theory (length, volume,
and effort), and McCabe's Cyclomatic Complexity suggest that Design 1 is less

* complex than Design 2. This agrees with a subjective assessment that a profi-
cient designer might make in comparing these designs.

2.5 DESIGV NETRICS AND ADA

.-'. This section considers how Ada may be used as a design representation
medium during the design phase, and how the Halstead metrics may be measured

56 Automating Software Design Metrics

0. %%-
*- , " " ." - - ' , - - -.. " " "."".+"-. "-'..-"." " ' ** "." " " "" .-,* ",V ' % ,''., , .'.' .. .\ \ *"., .. '''\-', :",,.-.-''' ',V -..-. ".,.-.

F9

09 00

r'

Rigel

Figue 1. EpermentConroler esig 1 Par 1 f 3

OnTeDvlpet-sadAuoaino einMtis 5

? -," -, '-'.- I

.. %*

0 0

'i K, .

2.::.: Figure 11. Experiment Controller - Design 1 (Part 2 of 3) €,

_--.. %' ,-

*-

- 58 Automating Software Design .Metrics "

, ,:, :,.,

,,

L--' "o

all

IJ

P%9

% %.

HUIj

FS
4

t 77.•

".-'.o. .'-

'. ~Figure 12. Experiment Controller -Design 2 (Part 1 of 5) €,.'"

"-- ' -60 Automating Software Design Metrics ,.€

;.-. :-.

,..-.. *,);' . _-.

'

, .. , -. " - " - " . . . ¢ . z ' - - , , . . .- ' - " - ' ' ; ' € , . : - '. , . , nU !€ , , - ' -; - Z € , . . ' . € ,

*. ~ * .*

*- - N

" (¢"
,.,..

A%.%

uL 2 .%

i~i:!; "",-0

.. . i ..,,%

""-, " , - I '_"'" '

... ,..

"-.,.*-.-.-.

. .-. .- ,,

... . .-... '.

"0 .0
-3_5%

m .%.,,:, - . - - On., T, e Development % , Use,-, and. Auoain"fDsgMtis 6
",.-. .,*-'.-. . '- .* .' .'% . -. ' .--. %- - *'..

* S . , - . _ ,. t) , , . \ , -.. : .
, ,. , , , - . -, , '' \ . . , , , , - , , .• • , . . . - , , . - . - . . . - . . - ,

: '." ""i'-,'.'','L'.',.-'?'...."-".,'£"- .': , ,'-" ".' 5

." ."

,-,9,

-*

-* ,

.- ,-
p.-

.~ ..

"

2. 3 .. " ., ,

..- i.ll

,-,,.62 Automating Software Design Metrics
"'

...- ,

_e " " •..5 ..

0... . • .. ,,,., . .. , . '., ,-,-,-.-..,-.. -. # - ,- - -,-. . .,. ,,., , .,,,, . :, , - ' '

;'"". "'" .. '""..-'''.. "_ "''..: .,'''.¢ "' """ .,'' ',.,' '. , r ' " ''¢''., 'j'',. "" . ,' 1./ .-. " ,,/.,", , . ",, ".,,,% S,"

.. ., V......................................

~~1 Si
- .- -

N I

- .%... I 1
.1
II

.0
U

~~~>4 
.4p.4  . V

0
J.

J.
'p

0 0

0

A'
-4sr4.

*
'-V

* S

'S

[0 Figure 12. Experiment Controller - Design 2 (Part 4 of 5)

On The Development, Use, and Automation of Design Metrics 63 .-

A

S

* * * * ~ . -

~, %%% %* *-. % .. ~ ~4, *~. *S b * %. *'~ . -



'Ii11/ .

UN -- i.. ,

--

"- . I -i.'

-'.-. '-

..-. *,p
Fiur 1.ExermntCotrler- eig 2(Pr 5of5

• ".:" "-'"-: :"-'-' - '2 : -'::'"; " .:'-" .. : ; . .. : : .: .<:;:. : ". N ? . 'a. .



Table 13. DARTS Metrics Summary - Design 1

OSIL MOK0SZ-ADS TOPNOOE ID, 1 PACE I
FOR REAL-TIME SYSTEM ALL GUNRATI NS DATE: 24 AS 1 96
HALSTEAD METRIC DATABASE ZS. SAMPLE TE: 19:46:56
OUNTZS METHO: INTERRETED ED ISIs AJRU92

Coui wiems COUN
, 5k, "mei.t.

2 CLEAR 1
IF RESULI_TABLI 1

XA 4
6 2E2.P.couMr 2
o ,6

GET 1
STEPS 3
iEAOZMGS 3 -. , .
INTERVAL I . 5..

N 1
DECEMENT 3
8 1 C
10 10

A.,, 1,-°,

9 I

is7 a

3 22 46" .- ,

DISTINCT OPERATOS

DIS1MMCT OPERANDS 22 1

TOTAL OPERATORS 6

TOTAL OPERAIND 6 * - -

VOAUaLARY 25

* DESIGN LiEGTH5

ESTIMATED LEIf 12.H9 2.

PERCENT OF -97.61

DEIG VOUME 261.481

POTENTIAL VOUME 2.000

DESIGN LEVEL 0.00m

ESTIMATED DESIGN LEVEL 0.319

INTELLIGN CONTENT 76.9. .

LANOUAGE LEVEL 0.017 . ,.-

ESTIMATED LANOUASI LEVEL 24.549 .-

EFFORLT 291.445 %-

ESTZIMATED EFFORT 757.371

CO. OESDlG-AIDS TIOPNOED 101.1 PAGE 1
FOR iAL-T"ZE SYSTEMS ALL WEWRATINS DATE: 10 AUD 1963
MCCAN METRIC DATABASE I31 AMPLE TIME: 20:22:20

USER IS: A.3139t

MCCAE INTERVAL_1-
"OULE NAM IIISIONS SPREDICATES LOWER 00N UPPER BDW

i lWERISENT CONTROLLER 1 4 4

FOAL OR STM , -
V"[IENT CONTROLLER 1 4 4 5 S

On The Development, Use, anM Automation of Design Metrics 65

-. *,",."v' "-? v,-- -.,v - ',- -,:. ,.,. ,,'.'..'.. -.-.,.' --. ;..-. - -. -. -.- -.- *- ,... -,.-. -. -.-. ~ -..- ,-.--,--



Table 14. DARTS Metrics Summary -Design 2

FO RIAL-1fl SYSTIMS A"L GINK&1ZU 0AlT, 24 A 1903
HASTA Mf.,M DA 0 MAS 221 SA.I lUMS 19.47:30

V6 6

oucinow 3
09=11 4

F6 1

1s 11
No 

1 
FV 1

72

174~K
013160 s F

rSD~l LeSTum U? 75.

PERCENT a"wi -WIC

% ..
013M Ua-TU5116 L 6681

EXTINATI31 13.MI £11339.1

631TLLI3NCI 5.cca iva

A.*8 F R m "Z22.431.

0 IS31336N1CUETOI 3195.3

CIML UZO*&M TONM rss.1 AIR

FOR NIAL7101 M.ALLCOMMNS UII 0 AU 19
66AM MIR AutomatSn Sotwr Design Metric1233

UM noAin0

MCCAMI ITER.-
MON"ON MMSZNIS NIMMTISLONE BOUD UPER*5UN

Ex~emew omroi~um2 a" 9

TOTA FO SUBSYSTEM *'W . ~



. o ..- . . . . .. . .....

from such a design. First, to what extent the information necessary to the it
products of the design phase may be expressed in Ada is examined. Then, a
counting method and guidelines for measuring the Halstead metrics from an Ada

design are proposed. This method is illustrated with an example, and some of

the issues raised are discussed.

2.5.1 Motivation " *.

As Ada compilers and Programming Support Env.-inments are nearing avail-
S" ability for use on actual projects, there is much interest in using Ada,

itself, as a design representation medium. This is appealing, because it pro-
vides an orderly, evolutionary way to progress from architectural design

.' through detailed design to full implementation. It is appropriate, because
the language provides the means for defining objects and operations which are
not primitive in Ada, through type, variable, function, procedure, and task
declarations; the means for hiding information about the implementation of the
objects and operations through packages and private types; and the means for
delaying implementation decisions through separate compilation of package spe-
cifications and bodies. Thus, a design can be expressed in Ada at any desired
level of abstraction; and characteristics such as interface correctness and
data typing consistency can be checked through use of the compiler, at any :0
stage of the process.

Objections which have been raised to using Ada as a design representation
medium center on the difficulty of restraining designers from premature intro- .'-..

duction of implementation detail, and the need, during design, for information
which is not best represented in Ada. Subsets and supersets of Ada have been S
proposed to solve these problems.

2.5.2 The Object-Oriented Design Methodology ', -

To make effective use of Ada as the design representation medium, a design
method must be employed which allows easy introduction of detail as design
decisions are made, but discourages the premature introduction of detail which ....,

might unduly constrain the implementation. One such method is the object-or-
iented design methodology explicated in [Boo 83]. It is used here to demon-
strate the use of Ada as a design medium and is summarized in the following
steps ([Boo 83] p. 70): 0

1. Define the problem.

2. Develop an informal strategy for solving the problem. State the prob-
lem solution in English. '

3. Formalize the strategy by .

On The Development, Use, and Automation of Design Metrics 67

I'-, ".," . .,,'o : "',', ". ".,",.".. .. .. ", -r -4 -. ,- .. . ....



-,,9,

a. Identifying th bjet usedC in tesolution, and their attributes.

b. Identifying the operations which are performed on the objects dur-
ing the solution.

c. Establishing the interfaces among the object-operation groups.
,. .

d. Implementing the objects and operations. "- "

This last step defines a new problem, so all the steps may be repeated at suc-
cessively greater levels of detail, until a code-to design is reached.

This method is also consistent with expression of the design using DARTS, -.

since DARTS supports hierarchical decomposition.

2.5.3 Using Ada as a PDL with the Object-Oriented Design Method
* -. 4.-:

Ada's information hiding, data abstraction, and strong typing capabilities
make it very suitable for expressing a design which is developed according to
the object-oriented design methodology, or another top-down, stepwise refine-
ment method. The objects become constants or variables of appropriate 0
user-defined data types, or tasks; the operations become procedures, func-
tions, task entries, or exceptions; the object-operation groups, which are
abstract data types, become packages. The interfaces among the groups are
defined by the package specifications and with clauses, and are controlled by
the compiler interface and type checking. Ada's capability for separating a
subprogram specification and body supports top-down design methods by allowing ,
an abstract data type to be referred to once its interface is specified,
before it is actually implemented. In addition, Ada provides means for
expressing relationships among objects and operations which are not found in
many design languages. These include the ability to specify parallel process- - "

ing, asynchronous data exchange, interrupts, exceptions, and machine-dependent
items.

Ada by itself, however, is not ideal for representing all of the informa-
tion which is needed during design. Table 15 and Table 16 indicate how the
information in each paragraph of the MIL-STD-SDS ([DoD 82]) design documents
can be represented in Ada. The paragraph numbers are taken from the associ-
ated Data Item Descriptions (DIDs) ([DoD 82] R-DID-110 and R-DID-ll).

As these tables show, much of the information called for in the documents
can only be represented in Ada as comments. In general, this information
falls into two classes: that which describes constraints or properties of the

software which are not directly reflected in its textual content, such as exe- -

cution time, memory size, or data rates; and that which requires reference to

698 Automating Software Design Metrics

%~ %

'__

Ke  .
:'. 'v'.-.'.'.-. -. 'V ' -v .,'. -.. . -.-.-- -. -..-. ' -..- -- -- .- -.-.- _.- -..- ,- ,- .----.- - - ,-_- - ._.-,, ,, ,- - . .-.-.- .. '-



Table 15. MIL-STD SDS Top Level Design Document Information in Ada.

Paragraph number Means of representation in Ada

V" 1.1 Comments, subprogram name. -
1.2 Comments.
2.1 Comments.
2.2 Comments.
3 Comments.
3.1 Package specifications and comments.
3.1.1 Comments, or by describing the hardware

with a package specification. j
3.1.2 Package specification with comments for

data rates.

3.2 Comments.
3.3.1 Task entry specifications and bodies,

exception specifications, handlers,
representation specifications.

3.3.2 Comments, real-time control statements
(e.g. DELAY), PRIORITY pragma. •

3.3.3 Package and representation specifications.
3.3.4 Comments, real-time statements.
3.4 Subprogram specification.
3.4.X Comments.
3.4.X.l Comments, subprogram specification.
3.4.X.2 Subprogram specification, comments. 0
3.4.X. 3 Subprogram specification, comments,

type and interface checking.
3.4.X.4 Exception specifications and handlers,

representation specifications, comments.
3.5 Package specification, representation

specifications, comments. ".
3.5.1 Package specifications, type definitions,

variable declarations, constraints,
representation specifications.

3.5.2 Package specifications, type definitions,
variable declarations, constraints,
representation specifications, comments.

3.6.all Package specifications, representation
specifications, comments.

4, 5, 7-9 Intentionally left blank in DIDs.
6 Comments.
10 Appendices - not applicable.

On The Development, Use, and Automation of Design Metrics 69

%* %* %* , %* o. 
-.

0

-.-.. -. % ..- -% ., - - - , . -.. .- % .... % % % -" - - -. -. ,.% ---. *. *.. .. * '- .*- .. .\ .- . .*V *~-,, .- -. ,,,, ,',, ..> , . :, .. * ** , - I. * - >:-.-- - *... -



-. I6

Table 16. KIL-STD SDS Detailed Design Document Information in Ada.

Paragraph number Means of representation in Ada

1.1 Comments.
4%b 1.2 Comments, package specification.

2.all Comments.
3 Comments.
3.1 Subprogram specifications, comments.

. 3.1.1 Subprogram specifications.
3.1.1.1 Comments, subprogram specifications.
3.1.1.2 Comments. K.

3.1.1.3 Subprogram specifications, bodies, comments. - ..
3.1.1.3.Y a) Comments.
3.1.1.3.Y b) Subprogram specification, declaration part

. of body.
3.1.1.3.Y c) Subprogram specification. .-

"' - 3.1.1.3.Y d) Subprogram specification, WITH and USE
clauses, comments.

• 3.1.1.3.Y e) WITH and USE clauses, comments. O
3.1.1.3.Y f) Comments.
3.1.1.3.Y g) Comments, subprogram specification, body.
3.1.1.3.Y h) Subprogram specification, WITH and USE

clauses, subprogram body, comments.
3.1.1.3.Y i) Comments.
3.2.1.X.6 Task entry specifications and bodies,

exception specifications, handlers,
".' representation specifications, comments.

3.2.1.X.7 Representation specifications, comments.
3.2.1.X.8 Comments, real-time statements. V
3.2.1.X.9 Package specifications, type definitions,

variable declarations, constraints,
representation specifications, comments.

3.2.1.X.10 Package specifications, type definitions,
variable declarations, constraints,
representation specifications, comments.

3.2.1.X.11 Subprogram body.
3.2.1.X.12 Comments.
3.3 Representation specifications, comments.

*:4 4, 5, 7-9 Intentionally left blank in DIDs.
6 Comments.
10 Appendices - not applicable.

-e 0

O 70 Automating Software Design Metrics S
.; ''

%- %-
AS



*~~~~ . -- .T . .

the project information structure outside the software, such as requirements
allocation to components, or references to design analyses. Supersets of Ada,
such as Byron ([Gor 83]), teamed with a key concept of the APSE requirements,
a unified database for the whole software development process, will do much to
alleviate these problems.

Another issue which determines how effective Ada is as a design represen-
tation medium is what tools and processing are available for turning the
information in the medium into the form which is suitable for the purposes of
the user. Since Ada is primarily a programming language, we tend to think of
it as input to a compiler. Other tools may use it as input for other pur-
poses, such as generation of documents, flowcharts, variable or module cross-
reference lists, data dictionaries, or hierarchical control trees. The
utility of Ada as a design medium, then, depends on the analysis capabilities

of a compiler and any other tools that may be used for processing the design
representation, as well as the expressive power of the language. In partic- 0
ular, a tool to measure metrics might prove useful.

2.5.3.1 Architectural Design.

*Using the object-oriented design method, the architectural design begins
with the expression of the informal problem solution in English. Once the ,
objects, operations, and their interfaces are defined, they may be specified
in the top level Ada representation. This usually takes the form of a package

V -. specification for each group of objects and operations which is used in the
problem solution, and a subprogram specification for the solution itself.
Preliminary design ends when enough iterations through the method have been
made so that the hierarchy, control, and data interfaces ([Boe 81] p. 48) for
all components have been defined to the level of a preexisting software compo-

iam nent, or a subprogram which "performs a single well-defined function, can be
developed by one person, and is typically 100 to 300 source instructions in
size" ([Boe 81] p. 49). As design progresses, the bodies of the packages are
filled in with control structures which use new, lower level, objects and -.
operations. These are specified in new packages. The body for the solution
subprogram is also filled in to show how the most abstract object-operation
groups are used.

The first design problem in [Boo 83] is used, in the following section, as
a sample for demonstrating the application of the Halstead metrics. It com-
prises a subroutine for counting the leaves on a binary tree. The English
language statement of the informal problem solution ([Boo 83] p. 72) (the
informal architectural design specification) is reproduced in Figure 13 at the
end of this section. Figure 14 reproduces the initial package specifications
for the counting leaves problem from [Boo 83], pp. 76-77, and Figure 15
reproduces the solution algorithm ([Boo 83] p. 78) which uses these packages
as primitives. Together they constitute the architectural design for the
problem. %

On The Development, Use, and Automation of Design Metrics 71

S. S

,.:,..-:, ..

• % , • ". ° .-. .%% %,- .. , . , - ", , , ,, - - .... ., . -... . . ....%.



2.5.3.2 Detailed Design

During detailed design, the algorithms for implementing the objects and
operations specified in the last level of architectural design are developed
in terms of objects and operations which are not visible outside the subpro-
gram which implements them. This may require further type, object and opera-
tion definitions, but they are logically local: the problem solution does not
use them directly, even though they may be part of a library of commonly
available packages. There will tend to be a larger proportion of native Ada
constructs and low level utility routines used than in the subprograms devel- .
oped during architectural design. Here, decisions such as the data structure
for local variables, or the order of operations necessary to meet accuracy
requirements are made.

Figure 16 shows the full detailed design for the counting leaves problem.
The private parts of the initial package specifications have been filled in, -

and the bodies have been written. The external specification for another
package, FIFO PACKAGE, has been introduced, because it is used in the imple-
mentation of the TREE PACKAGE. It is assumed to be a preexisting package, so
its body is not given here. The solution statement has not changed from that

* given in the architectural design, so it is not repeated.
.-

2.5.4 Using Halstead Metrics on Ada ,..- .

The Halstead metrics may be applied at several stages during the design
development: The informal English statement of the problem solution may be 0
measured following the techniques in [Hal 77] Chapter 13 ([Hal 77] pp. 98-110)
(this is explained with the example in a later section), and the design
expressed in Ada may be measured using the method described in the following
section, at any stage of the design or coding phases.

The metrics may be used to provide a way to judge which of several differ- 9. ...
ent solution strategies is simpler, based on the objects and operations in
which it is stated; to estimate planning parameters from the architectural
design; and to provide a reasonableness check on the quality of the design as
it evolves. Since the design is expressed in actual Ada code, the same met-
rics may be applied to the code as it evolves, to monitor complexity as chang-
es are made. The measurements for the architectural design can also be
compared with those for the English solution statement to discourage premature
implementation decisions. :[

2.5.4.1 The Counting Method

A design expressed in Ada can be viewed in two ways: as an expression of 0
a problem solution in terms of a language invented for the occasion, compris- .

. . :Ii

72 Automating Software Design Metrics

*4- .i.b

16~ A
. ,. . . .. . . . . . - . . . . . .. % '



• , .-o-..

ing the objects and operations needed for the solution; or as an implementa-
tion of that solution in the language Ada. In the first case, the objects and
operations developed during design are viewed as if they had always existed,
and had been part of the designer's vocabulary. The language the designer is .
speaking is not Ada, but an *xtremely specific one which solves the problem,

. but cannot express anything else.

This might be the more useful point of view for comparing competing
designs for conciseness as abstract solutions. The second case, howev r, is a
more accurate representation of what actually happens during the design proc-
ess: the designer invents the objects and operations with which to express .0

the solution. This corresponds to using the Ada constructs which create
types, variables, and subprograms. It is proposed here as the point of view
more likely to lead to a serviceable method of using the Halstead metrics for --._
comparing designs as practical solutions, and for predicting planning parame-
ters.

Accordingly, in the method proposed below, lexical elements in Ada are
designated as operators or operands in accordance with how the they function
from the point of view of the person who is writing in the language Ada, giv-

* ing directions to an abstract machine which will create and manipulate the
objects specified. As design progresses, the abstract machine becomes parti-
cularized as the real machine.

This point of view has other benefits: It allows all the code available
to be included in the measurements at any stage, so complicated provisos are
not necessary for different levels of detail. It allows different strategies
to be devised for selecting portions of the the design to be measured to tai-
rlo the method for a particular use of the metrics, such as predicting plan-

ning parameters. It allows *the same method to be used throughout the design
and coding phases and it is consistent with earlier efforts at measuring the
Halstead metrics in high level languages.--. 7
2.5.4.1.1 IDENTIFYING OPERATORS AND OPERANDS

With this philosophy, the entities which are operations in the object-or-
-. iented design statements are usually Halstead operands of Ada keywords which

are Halstead operators. For example, a procedure or task entry call will be a
O_ verb phrase in the solution statement. In Ada, its declaration is viewed as a

command to create a procedure or entry and make accessible its name and
external interface. The operator is the implicit "create" represented by the
reserved word procedure or entry and the operand is the procedure/entry name.
The invocation of the procedure or entry is viewed as a "call" or "invoke"
operator with the procedure/entry name as its operand. Similarly, the
reserved words type and package are further particularizations of the general S
"create" operand, with the type and package names as operands.

On The Development, Use, and Automation of Design Metrics 73

".%'%



.°," . °-... .f Y- °-V ~

The following method, based on the generalized identification and counting
technique of Section 2.2.3.2 is proposed for identifying Halstead operators
and operands:

1. Comments are ignored.

2. Pragmas and declarations are included.

3. The following are counted as operators:

All delimiters, including compound delimiters (e.g., ">=", "..").

For paired grouping symbols, such as "(" and ")" each pair is one
operator.

All reserved words.

4. The following are counted as operands:

All literals, including numeric literals, character literals (in-
side the "'"s), and string literals (inside the """s).

All other identifiers which are not reserved words in the context
in which they are used. These include type names, formal parameter
names, package names, function names, procedure names, task names,
entry names, and exception names. .i

Note that since Ada allows the same name to refer to different entities,
through scope changes and overloading, care must be taken to treat distinct

S,"entities as distinct operators and operands.

. 2.5.4.2 Possible Adjustments to the Counting Method

The counting method proposed above has been used on the simple examples in
* the following section, but it has not been verified by application to a sta-

tistically significant number of design problems and correlation with desired
end products, such as estimates for development cost. When such data is col-
lected, the counting method might need to be adjusted to perform better as a
predictor of cost or yardstick of quality. This section lists some areas whe-
re the counting method might be adjusted.

The method used here is based on an expression of the design in pure Ada. ..
If a superset is used, the new design language constructs will have to be
included in the counting method. In particular, if Byron were used, the Ada
comments which are Byron statements would need to be included in the metric
determination, since the Byron statements are Ada comments. The Byron key-
words and other constructs would need to be integrated with the counting for
the Ada constructs.

74 Automating Software Design Metrics

%' %"

% e..

V_ .

• ..... K.. . .. .. . . ... ..*.. : ...... * ** * * ~.......-.



- -. ~ '. r.r. ____

The philosophy for dividing operators and operands might need to be recon-
sidered, especially in the areas of types, declaration versus use of items,
task objects, generics, formal parameters, and renaming. [Els 78] discusses
some of these issues in the context of PL/I.

Use of the use clause lets the designer use objects and operations from
other packages without having to specify the full package and entity name in ..0

;" each reference. A design written this way will have lower total operator and,
especially, operand counts. Fully qualified names might be a better
reflection of the amount of effort expended by the designer. A metric evalu- ..

ation tool using an APSE database would be able to resolve references to
- external packages, and compensate for the use of the use clause in the design.

2.5.4.3 Automation Potential

Automatic collection of the Halstead metric data from an Ada represen-
tation of a design is clearly feasible. It does, however, require a tool as ..

complex as the syntactic and semantic analysis portions of a compiler, since
the design is subject to the same potential ambiguities that a program is.
Other problems may arise if the design language is a superset of Ada. For
example, a superset might allow inclusion of free-form text as a significant .
part of the design. Such a tool would best be incorporated as part of an
APSE, since the central database provides a natural means for tracking pro-
gress and monitoring quality as the development takes place.

2.5.4.4 Example

The first design problem in [Boo 83), counting the leaves on a binary .,

tree, is used here as a sample for demonstrating the application of the Hal-
stead metrics. The English language solution statement (the informal archi-
tectural design specification), the Ada architectural design specification,
and the Ada detailed design specification are given in the figures which fol-
low the discussion. -

According to Halstead [Hal 77] Chapter 13, the software science parameters
may be measured from the English solution statement by counting as operators
the "function words" given in Table 13.1 ([Hal 77] p. 100), punctuation, cap- .*

italization, paragraphing, and numbers with one significant digit; and as
operands all other words. The results of applying this counting method to the
English statement of the informal problem solution for the counting leaves
problem are given in Table 17 and Table 18.

Halstead also discusses adjusting for the redundancy usual in natural lan-
guage, which comes about through using synonyms to make the prose style more
interesting. He proposes that all distinct character patterns should be S
counted as distinct operators or operands and then the numbers for distinct
operators and operands should be reduced by a factor to allow for synonyms and - -'

On The Development, Use, and Automation of Design Metrics 75

*v'r ' ,,*4 .. ,* . , . . , . . , . ". - ,



variant forms, such as plurals. He proposes 0.4 as a reasonable factor, and

uses the difference between the estimated and actual lengths to substantiate
this choice. Table 19 shows the values for the metrics with this adjustment
made to the number of distinct operators and operands in Table 18. In this
case, picking the factor to make the estimated length agree with the actual

.o,

lefint f 3 h2 g siu s e of. for t h a r tead metric values

"'" ~ baidb usetedingteice fctore ae aes hownte n atal 19. h t ustnite

thsco.Table ist s the tosaduoers for the arcitectual levstet of

for the architectural design. Table 22 and Table 23 contain the operators,
operands, and metric values for the detailed Ada design. In each of these
figures, the information is shown for each major component of the system, as
well as the system as a whole. That is, the COUNTERPACKAGE, PILE PACKAGE,

. TREE-PACKAGE, and the main procedure numbers are shown for the architectural
design in the columns labelled CP, PP, TP, and main, respectively. The
detailed design figures include, in addition, a column labelled FP, for the
FIFO PACKAGE.

. o2.5.4.5 Analysis of the Counting Leaves Example

This example shows that the Halstead metrics may be measured from an Ada
Nfdesign representation, but the Utility of the data as a predicting and con-

trolling tool remains to be verified on more, larger samples. As may be seen
from the figures, the metric values increase with the addition of detail to
the design, as expected. The correspondence between the program length esti- "
mator and the program length metric also improves with additional detail. It
is likely that the metrics can be used to compare alternate designs, as long
as they are compared at the same level of detail.

The Halstead metrics will favor the design which is expressed using fewer
objects and operations, since they effectively correspond to the operands and
operators counted in determining the Halstead measures. This encourages the -
designer to think about, and express, the solution in terms which are high
level, as close as possible to the level of the problem statement, rather than
in terms of the primitives of the system upon which it will be implemented. ..
There is soe evidence that the object-oriented design method encourages this -

kind of design, in that the estimated language levels for the architectural
-] design are larger than those for the detailed design, and the estimated lan-

guage level for the main subprogram is larger than those for the supporting
packages.

changer as desin proreses The eprssite mightonhen bers waic a e guidelinePosersilt of th r mti valuhes fors omponentsc at diff en imleesed of

deil ouden usedh to de aelopa lcaactesi proiel for how trhiectvals •

change as design progresses. The profile might then be used as a guideline

for estimating development cost parameters for new modules, or for setting

76 Automating Software Design Metrics

.S.:



-.---°- - -. -. -

-7:j

bounds on a reasonable growth rate for the metrics during the design process.

Any module which exhibited an out-of-bounds growth rate would be suspect. The
profile might depend on following a particular design method, such as the

, object-oriented method, in which the changes from level to level are well
defined and constrained.

Keep a pile of the parts of the tree that have not yet been
counted. Initially, get a tree and put it on the empty pile; 0

" "the count of the leaves is initially set to zero. As long as
the pile is not empty, repeatedly take a tree off the pile and
examine it. If the tree consis of a single leaf, then
increment the leaf counter and throw away that tree. If the
tree is not a single leaf but instead consists of two subtrees
split the tree into its left and right subtrees and put them 0

4/ back on the pile. Once the pile is empty, display the count
of the leaves.

Figure 13. English Language Problem Statement for Counting Leaves

V %

S'-..- 
.

0

On The Development, Use, and Automation of Design Metrics 77

I•%

9-%

%' %~ Z0

% V %
41r 5C A



- .- . " ", . -

.q

package COUNTER PACKAGE is .
type COUNTER TYPE is limited private;
procedure DISPLAY (COUNTER : in COUNTER TYPE);
procedure INCREMENT (COUNTER in out COUNTERTYPE);
procedure ZERO (COUNTER : out COUNTERTYPE);

private

end COUNTER PACKAGE;

with TREEPACKAGE;
package PILE PACKAGE is

type PILE TYPE is limited private;
function ISNOTEMPTY (PILE : in PILE-TYPE)

return BOOLEAN; h

procedure PUT (TREE : in out TREE PACKAGE.TREE TYPE;
ON : in out PILETYPE);

* procedure PUT INITIAL (TREE : in out TREE PACKAGE.TREE TYPE;
ON : in out PILE TYPE);

• procedure TAKE (TREE : out TREE PACKAGE.TREETYPE;

OFF in out PILE TYPE);
private

end PILE PACKAGE;

package TREEPACKAGE is
tYpe TREETYPE is private;
procedure GET INITIAL (TREE : out TREETYPE);

function IS SINGLE LEAF (TREE : in TREE TYPE)
return BOOLEAN;

procedure SPLIT (TREE in out TREETYPE;
LEFTINTO out TREE TYPE; -

RIGHT INTO: out TREETYPE);
procedure THROWAWAY (TREE : in out TREE TYPE);

private

end TREE PACKAGE;

Figure 14. Ada Architectural Design Specification for Counting Leaves.

78 Automating Software Design Metrics S

AL

% V --



.47%.7 K.a77-** F. e. . - ....-.

With COUNTER PACKAGE, PILEPACKAGE, TREE PACKAGE;
Use COUNTER PACKAGE, PILEPACKAGE, TREE PACKAGE;

* procedure COUNT-LEAVES ON BINARYTREE i~s
LEAF COUNT :COUNTER TYPE; .

LEFT SUBTREE :TREE TYPE;
PILE :PILETYPE; ~a-

TREE :UTE TREETYPE;
begin
GETINITIAL(TREE);

- ~ PUTINITIAL(TREE, ON => PILE);
* ZERO(LEAF COUNT);
* while IS NOT EMPTY (PILE);

loop
TAKE(TREE, OFF => PILE);
if ISSINGLE LEAF(TREE) then

INCREMENT (LEAFCOUNT);
THROWAWAY(TREE);

else .~ j

0 SPLIT(TREE,0
LEFT INTO => LEFTSUBTREE, a

RIGHTINTO => RIGHTSUETREE);
PUT(LEFTSUBTREE, ON => PILE);-
PUT(RIGHT SUBTREE, ON => PILE);

end if;
end loop;

*DISPLAY (LEAFCOUNT); VZ
end COUNTLEAVESONBINARYTREE;

Figure 15. Ada Solution Statement for Counting Leaves.

On he evlopen, Ueand Automation of Design Metrics 79

...............................
a- a..- le. -.a1



- . - -

package COUNTER PACKAGE is
type COUNTER TYPE is limited private;
procedure DISPLAY (COUNTER : in COUNTER TYPE);
procedure INCREMENT (COUNTER - in out COUNTER TYPE);
procedure ZERO (COUNTER : out COUNTER TYPE);

private .-

type COUNTER TYPE is NATURAL;
end COUNTERPACKAGE;.0

with TEXT 10;
package body COUNTER PACKAGE is .

procedure DISPLAY (COUNTER : in COUNTERTYPE) is
package COUNTER IO is new TEXT IO. INTEGER_IO(COUNTERTYPE); 0

begin
COUNTERIO.PUT(COUNTER);

end DISPLAY;

procedure INCREMENT (COUNTER in out COUNTER-TYPE) is
begin

COUNTER := COUNTER + 1;
end INCREMENT;

procedure ZERO (COUNTER out COUNTER TYPE) is
begin

COUNTER := 0;
end ZERO; -

end COUNTER PACKAGE;

Figure 16. Ada Detailed Design for Counting Leaves -
COUNTERPACKAGE. (Part 1 of 8) -° -O

• .w'n* -.- J

N- - -

0

.1.5 %...,

%-4

80 Automating Software Design Metrics 0,.".-

. .. . •.. -.- ,-, .... '.- .-..-.. .. . .- . ..- ."-. ...- -,., . ,,' .',,"., -. ," ,- ',- .'.=,.= -,. .5-',',, -. ,,' . -. -,. ,.:, . :.., ,..*.



with FIFOPACKAGE;
With TREEPACKAGE;

* package PILE-PACKAGE is

type PILE TYPE is limited private;
function IS NOT -EMPTY (PILE :in PILETYPE)

return BO0OLEAN;
procedure PUT (TREE :in out TREE_-PACKAGE.TREE TYPE;

ON in Out PILE TYPE);
procedure PUTINITIAL (TREE in out TREEPACKAGE.TREETYPE;

ON in out PILETYPE);
procedure TAKE (TREE out TREE PACKAGE.TREETYPE;

OFF :in out PILE TYPE);
private

package TREE_QUEUE is new FIFO PACKAGE (TREE TYPE);
type PILETYPE is TREEQUEUE.QUEUETYPE;

end PILE-PACKAGE;

Figure 16. Ada Detailed Design for Counting Leaves -PILE PACKAGE. (Part
2 of 8)

OnTeDvlpenUe n utmto fDsinMtis 8



.. . . . . . . .. . . . . . . . . . . ...

pakg boyPL-PCAEi

fucinI0O MT PL nPL YE

rett r TREE QUEUEUEI;EPT(IL)

ento IS NOT EMPTY (IE i PL YE

procedure PUT (TREE :in out TREE PACKAGE.TREE TYPE;
ON in out PILE TYPE) is

begin
TREEQUEUE.APPEND (ELEMENT => TREE, TO => ON);0

'-A end PUT;

procedure PUT INITIAL (TREE :in out TREE PACKAGE.TREE TYPE;
ON in out PILE TYPE)

renames PUT;

procedure TAKE (TREE :out TREE PACKAGE-TREE_-TYPE;
OFF :in out PILE TYPE) is

begin
TREEQUEUE.TAKE (ELEMENT => TREE, OFF => OFF);

end TAKE;

end PILE-PACKAGE;

Figure 16. Ada Detailed Design for Counting Leaves -PILEPACKAGE. (Part
3 of 8)

82 Auomatng Sftwar Desgn Mtri.

V N14., V N' %J VW.' ! -.



a',,,-.

'aV

package TREE PACKAGE is
type TREE TYPE is private;
procedure GET INITIAL (TREE out TREETYPE);
function ISSINGLELEAF (TREE : in TREE TYPE) "< "

return BOOLEAN;
procedure SPLIT (TREE : in out TREETYPE;

LEFT INTO out TREE TYPE;
RIGHT INTO: out TREE TYPE);

procedure THROWAWAY (TREE : in out TREE TYPE);
private

type NODE;
type TREETYPE is access NODE;
type NODEVALUETYPE is STRING(..IO);

Stype NODE is
record *-.

LEFT : TREE-TYPE; . -a
VALUE : NODE VALUE TYPE;
RIGHT : TREETYPE;

*O end record;
end TREEPACKAGE;

Figure 16. Ada Detailed Design for Counting Leaves - TREE-PACKAGE. (Part e.
4 of 8) -

4,

•J.'f,-- . ..

a '

ad -

a-TeDvlpet sadAuoaino einMtis 8

'a..%

-s , .?..:. / ,. . . . . .,. .. , .. . .. .. . .. . . . , : . . . . . , . . . , . . ,

,* 'S - - -. / % .-, -. .-.- .-.. -. ' ' -•-. '-.-..% .-. ' .-.. ' ' ' ' -- -.,.-2 % .' °. '''' .



;j .. . .. .~~* -. . . . . . . . .. . .. .. ... ... . . .

With DIRECT 10;
package body TREEPACKAGE is

% ~procedure GET INITIAL (TREE :out TREE TYPE) is
.Assume hat the tree information-is in a direct

-access file. Each record consists of the information
-for one node of the tree, consisting of the value for
-the node, the file index of the top node of the left

* - -- subtree, and the file index of the top node of the
-- right subtree, in that order.

* -- The file index for the subtree will be zero
-if the node is a leaf.
-The topnode for the entire tree is in record 1.

. .

type TREERECORD TYPE;
package TREE 10 is new DIRECTR(TREERECORDTYPE);
type TERECORD TYPE is

recorde
VALUE :NODEVALUE TYPE;
LEFTINDEX : TREEIO.POSITIVE COUNT;
RIGHTINDEX: TREEI0.POSITIVECOUNT;

- gend record;

TREE RECORD: TREE RECORD TYPE;.
DATA-FILE : TREE IO.FILETYPE;

with TREE 10;UET :EOTE E _Tou
procedure _E-UTE (TE :, OuTEETYE

RECORD INDEX: in TREE IO.POSITIVE COUNT;
FILE in TREE IO.FILETYPE;

* ." TREE RECORD : in out TREE RECORD TYPE
)is -

Figure 16. Ada Detailed Design for Counting Leaves - TREE PACKAGE. (Part
5 of 8)

- ~ 84 Automating Software Design Metrics

. .-, .. -.

,.- . ** ~ .... * v ***. ~ .- ~.-- -



begin
if RECORD-INDEX = TREE IO.POSITIVECOUNT(O)
then

null;
else

TREEIO.READ(FILE, ITEM => TREERECORD,
FROM => RECORD INDEX);

TREE := new NODE' (LEFT => null,
VALUE => TREERECORD. VALUE,
RIGHT => null);

GETSUBTREE(TREE => TREE.LEFT,
RECORDINDEX => TREERECORD.LEFTINDEX, '..
FILE => FILE,
TREE RECORD => TREE RECORD);

GETSUBTREE(TREE => TREE.RIGHT,
RECORD INDEX => TREE RECORD.RIGHT INDEX,
FILE => FILE, ,
TREE RECORD => TREE RECORD); V

end if; .

end GETSUBTREE;

begin
TREE IO.OPEN (DATA FILE,

MODE => INFILE,

NAME => "Put in implementation detail here", •
FORM => "Put in implementation detail here");

GET SUBTREE(TREE => TREE,
RECORDINDEX => TREEIO.POSITIVECOUNT(l),
FILE => DATAFILE,
TREE RECORD => TREERECORD);

TREE IO.CLOSE (DATA FILE);
exception

-- Fill in exception processing during implementation.
when DATAERROR => V--

null; .. .-

Figure 16. Ada Detailed Design for Counting Leaves - TREE PACKAGE. (Part
S6 of 8)

. -

On The Development, Use, and Automation of Design Metrics 85

z" J, .- .- 
. .., . .- .- .. . . . .. -. .- .. -..- - - - . . . . . . . . . . . . , . . . .. . .. . . ,

% " . . " , , " .. ' ,. " . . - % % " , - , , "- ' " , • % - * °. .-. . ° . . - . .. ' . .- . , % . %- , ,



..j.--. - .. -'- - . --.. -.-

when DEVICE-ERROR =>
* null;

when END ERROR =>
null;

when NAMEERROR =>" . :null;
when STATUS ERROR =>I

null;
when USE ERROR => .

null;
*. -'. end GET-INITIAL; .

function ISSINGLELEAF (TREE in TREETYPE) 0
return BOOLEAN is

begin ~~
return (TREE.LEFT = null) and (TREE.RIGHT = null);

end IS SINGLE LEAF;

procedure SPLIT (TREE in out TREE TYPE; S
LEFT INTO out TREETYPE;
RIGHT_INTO: out TREETYPE) is

begin
LEFTINTO := TREE.LEFT;
RIGHTINTO := TREE.RIGHT;
THROWAWAY(TREE);

end SPLIT;

procedure THROW AWAY (TREE : in out TREE TYPE) is
begin

-- Assume that deallocation and garbage collection are
-- done by the system.
TREE := null;

end THROWAWAY;
end TREE PACKAGE; -

Figure 16. Ada Detailed Design for Counting Leaves - TREE-PACKAGE. (Part
4-%7 of 8)

.]

9.'.

0%

86 Automating Software Design Metrics

V.s-%. .%_



~ t - --- o .7-*.

::Ill .. _-;;~.7 -.-..:!%

*i generic

type QUEUE ELEMENT VALUE TYPE is private;
"- package FIFOPACKAGE is

type QUEUE TYPE is limited private;
- EMPTYQUEUE: constant QUEUE TYPE;

function "=" (QUEUEl: in QUEUETYPE;
QUEUE2: in QUEUETYPE)

return BOOLEAN; 0
function IS EMPTY (QUEUE : in QUEUE TYPE)

return BOOLEAN;
, procedure APPEND (ELEMENT: in QUEUEELEMENTVALUETYPE;

TO : in out QUEUE TYPE);
procedure TAKE (ELEMENT: out QUEUEELEMENTVALUETYPE;

OFF in out QUEUETYPE);
private

type QUEUE ELEMENT TYPE;
/ type QUEUETYPE is access QUEUEELEMENTTYPE;

type QUEUE ELEMENT TYPE is .,

* record
VALUE: QUEUEELEMENTVALUETYPE;

REST : QUEUETYPE;
end record;

end FIFO PACKAGE;

Figure 16. Ada Detailed Design for Counting Leaves - FIFOPACKAGE. (Part
8 of 8)

On T v e e A a

"." ;*,".

::: ~ ~'.4 .:

* -"- 
" J

" % %%. "-%
%-'.

,-,--:.:

w• % %

On Te Dvelpmen, Ue, nd utomtio ofDesin Mtris 8

a, .,. ,,

"\"



A~ DRAPER 869 AUO INC CAMBHRIDEN MEPRACS(U)ALES T AK/
R~~ D RAPR14 869 A INC CAFTWRIGNA PERCS CARSLES ETAR L2

FEB 84 CSDL-R-1662 RRDC-TR-84-27 F30602-82-C-8i38
UNCLSIIEDF/912 N

E= h1hEEhEmhhEohhEmhEEI
EEEEmhEmhohEEI
U.K... F oso



.2.

d...6

4-.O

11111-2 1 111.

- L|

MICROCOPY RESOLUTION TEST CHA'RT
NATIONAL __UE A l STAN AR DS- A

...

All



* Table 17. Operators and Operands in English Statement for Counting Leaves

HALSTEAD METRIC (BOO 83] DESIGN PROBLEM ONE -ENGLISH

I . .'..

OPERATORS COUNT OPERANDS COUNT

<paragraph> 1 Of f 1
< upper case> 6 put 2

6 set 1
5 back 1
1 leaf 3 V

a 5 left 10
as 2 long 1
if 2 pile 6
is 4 take 1
it 2 tree 7
of 6 count 2
on 2 empty 30
to 1 parts 1*

*and 5 split 1
*but 1 throw 1

get 1 leaves 2
its 1 single 2
not 3 counted 1
the 15 counter 1

*two 1 display 1 '
yet 1 examine 1
away 1 consists 2
been 1 subtrees 2
have 1 increment 1
into 1 initially 2
keep 1 repeatedly 1

6once 1s-
that 2 *J.

them 1
then 1
szero 1

*right 1
instead 1

33 84 26 48 0

88 Automating Software Design Metrics

-5, %

j t j6% I-e 7 k7''-tO 1 pat s 1 -'..'[-

and 5 split 1' " 
"

..................- ounter\*......*.1S'*......*.......S5..
*; *5** *tWO * * ~ * ~ . '. . * .-.. 1 is la 1 *.'. %



Table 18. Halstead Metric Values for English Statement for Counting

Leaves

'HALSTEAD METRIC (BOO 83] DESIGN PROBLEM ONE -ENGLISH

DISTINCT OEARS33

DISTINCT OPERANDS 26

TOALOERTRS8

TOTAL OPERATOS 8

* VOCABULARY 590

DESIGN LENGTH 132

ESTIMATED LENGTH 289 -

PERCENT OFF -119

DESIGN VOLUME 777

POTENTIAL VOLUME 26

ESTIMATED DESIGN LEVEL 0.03

INTELLIGENCE CONTENT 25 '

ESTIMATED LANGUAGE LEVEL 0.8

ESTIMATED EFFORT 23,654

On Te r3velpmet, se, nd utoatio ofDesgn Mtris 8

i0.1~* -L'%



. .. . . ..~# ' . X~ W • YVVV. - --. 'b'.% % % . , .,

Table 19. Halstead Metric Values for English Statement Adjusted for -'
Redundancy

S 4..,,.~ ESGHALSTEA METRIC [BO 83)J ESG PROBLEM ONE -ENGLISH

Redundancy factor = 0.4 0.554

DISTINCT OPERATORS 13.2 18.3 -V.

DISTINCT OPERANDS 10.4 14.4

TOTAL OPERATORS 84 84

TOTAL OPERANDS 48 48 -
.-... VOCABULARY 23.6 32.7

,." .. ,.

DESIGN LENGTH 132 132

ESTIMATED LENGTH 84 132

PERCENT OFF 36 -0.1

DESIGN VOLUME 602 664

POTENTIAL VOLUME 20 22 r

ESTIMATED DESIGN LEVEL 0.03 0.03

INTELLIGENCE CONTENT 20 22

ESTIMATED LANGUAGE LEVEL 0.6 0.7

ESTIMATED EFFORT 18,338 20,256 "

4,'%

90 Automating Software Design Metrics

% % %



.C

Table 20. Operators and Operands in Architectural Design for Counting
Leaves. (Part 1 of 3)

HALSTEAD METRIC [BOO 83] DESIGN PROBLEM ONE - ARCH DES

OPERATORS CP PP TP main system -

( 0 3 0 0 3

3 4 4 12 23
5 10 8 21 44

0 0 0 10 10
3 7 6 5 21

> 0 0 0 6 6
begin 0 0 0 1 1
else 0 0 0 1 1
end 1 1 1 3 6
function 0 1 1 0 2
if 0 0 0 2 2
in 2 6 3 0 11

*is 2 2 2 1 7
limited 1 1 0 0 2
loop 0 0 0 2 2
out 2 6 5 0 13 s,
package 1 1 1 0 3 .U..

private 2 2 2 0 6
procedure 3 3 3 1 10
return 0 1 1 0 2
then 0 0 0 1 1
type 1 1 1 0 3

" use 0 0 0 1 1
while 0 0 0 1 1
with 0 1 0 1 2

DISTINCT OPERATORS 12 16 13 16 25
TOTAL OPERATORS 26 50 38 69 183

On The Development, Use, and Automation of Design Metrics 91 !

U.''

_- "". ".Z,,-- ..- ,.-



",.f- o . . .. . .

Table 20. Operators and Operands in Architectural Design for Counting
Leaves. (Part 2 of 3)

HALSTEAD METRIC [BOO 83] DESIGN PROBLEM ONE - ARCH DES

OPERANDS CP PP TP main system

BOOLEAN 0 1 1 0 2
COUNT LEAVES ON BINARY

TREE 0 0 0 2 2
COUNTER(DISPLAY) 1 0 0 0 1
COUNTER(INCREMENT) 1 0 0 0 1SCOUNTER (ZERO) 1 0 0 0 1
COUNTER PACKAGE 2 0 0 2 4 J
COUNTERTYPE 4 0 0 1 5
DISPLAY 1 0 0 1 2
GET INITIAL 0 0 1 1 2
INCREMENT 1 0 0 1 2
IS NOT EMPTY 0 1 0 1 2
IS-SINGLE LEAF 0 0 1 1 2 e

LEAF-COUNT 0 0 0 4 4
LEFTINTO 0 0 1 1 2
LEFT SUBTREE 0 0 0 3 3
OFF(PP.TAKE) 0 1 0 1 2
ON(PUT) 0 1 0 2 3
ON(PUT INITIAL) 0 1 0 1 2
PILE(main) 0 0 0 6 6
PILE(IS NOT EMPTY) 0 1 0 0 1
PILE PACKAGE 0 2 0 2 4
PILE TYPE 0 5 0 1 6
PUT(PILEPKG) 0 1 0 2 3
PUTINITIAL 0 1 0 1 2
RIGHT INTO 0 0 1 1 2

92 A- ".D

S..-..

92 Automating Software Design Metrics ,.€.

0.:.-..

•.

V.



., Table 20. Operators and Operands in Architectural Design for Counting o.s"

° .. o-5

<':' ~Leaves. (Part 3 of 3) . :

• .".HALSTEAD METRIC (BOO 83] DESIGN PROBLEM ONE -ARCH DES .,.

.'

TbOOPERANDS CP PP TP main system Cn g

RIGHT SUBTREE 0 0 0 3 3

- SPLIT 0 0 1 1 2
TAKE(PP) 0 1 0 1 2
THROW AWAY 0 0 1 1 2

,' TREE(PUT) 0 1 0 0 1
- TREE(PUTINITIAL) 0 1 0 0 1 . -.

TREE(TAKE) 0 1 0 0 1
'.. TREE(GET INITIAL) 0 0 1 0 1

TREE(IS SINGLE LEAF) 0 0 1 0 1
TREE(SPLIT) 0 0 1 0 1 . %

* TREE(THROW AWAY) 0 0 1 0 1
TREE(main) 0 0 0 7 7

; TREE-PACKAGE 0 4 2 2 8 0
TREE TYPE 0 3 7 3 13
ZERO 1 0 0 1 2

DISTINCT OPERANDS 8 16 13 28 40
TOTAL OPERANDS 12 26 20 54 112

.0 J* '..

.9

:- . .. . . . .. ... .:: 4.

%...

6P e "e

599



Table 21. Halstead Metric Values for Architectural Design for Counting

Leaves

HALSTEAD METRIC (BOO 83] DESIGN PROBLEM ONE -ARCH DES

CP PP TP main system

DISTINCT OPERATORS 12 16 13 16 25

DISTINCT OPERANDS 8 16 13 28 40

TOTAL OPERATORS 26 50 38 69 183

TOTAL OPERANDS 12 26 20 54 112

VOCABULARY 20 32 26 44 65

DESIGN LENGTH 38 76 58 123 295

*ESTIMATED LENGTH 67 128 96 199 329

PERCENT OFF -76 -68 -66 -61 -12

4.DESIGN VOLUME 164 380 273 672 1777

ESTIMATED DESIGN LEVEL 0.1 0.1 0.1 0.1 0.03

INTELLIGENCE CONTENT 18 29 27 44 51

.4ESTIMATED LANG LEVEL 2.0 2.2 2.7 2.8 1.5

ESTIMATED EFFORT 1478 4940 2726 10360 62181

144

% 94 Autoatin SofwareDesin Meric

w4~o."*4

N:

% % % % %



Table 22. Operators and Operands in Detailed Design for Counting
Leaves. (Part 1 of 6) .

HALSTEAD METRIC [BOO 83] DESIGN PROBLEM ONE - DET DES

OPERATORS CP PP TP main FP system

o o 1 0 0 1 •
0 0 2 0 1 3
2 10 19 0 0 31 '..'.

() 8 12 23 12 4 59
15 25 55 21 16 132
0 2 16 10 0 28
6 14 24 5 10 59

+ 1 0 0 0 0 1
=(relational) 0 0 3 0 0 3
=(fcn name) 0 0 0 0 1 1

0 0 1 0 0 1
0 4 26 6 0 36

:=2 0 4 0 0 6 O
access 0 0 1 0 1 2
and 0 0 1 0 0 1
begin 3 3 5 1 0 12
body 1 1 1 0 0 3
constant 0 0 0 0 1 1
else 0 0 1 1 0 2
end 5 5 10 3 2 25
exception 0 0 1 0 0 1
function 0 2 2 0 2 6
generic 0 0 0 0 1 1
if 0 0 2 2 0 4
in 4 12 9 0 6 31
is 8 8 12 1 5 34
limited 1 1 0 0 1 3
loop 0 0 0 2 0 2
new 1 1 2 0 0 4

-. 5.-.-.,

On The Development, Use, and Automation of Design Metrics 95 .

.. .;.. .. . . ..'..-' -.-. .- .,':On-'.The.,-,Development-,...-.,---" Use,... and .- Automation,.-..--..-. of.Design.Metric. 95.. .--..-.-.-



Table 22. Operators and Operands in Detailed Design for Counting
Leaves. (Part 2 of 6)

~HALSTEAD METRIC [BOO 83) DESIGN PAOBLEM ONE -DET DES

*OPERATORS CP PP TP main FP system

not 0 1 0 0 0 1.
null(statement) 0 0 7 0 0 7

-null(access value) 0 0 5 0 0 5
out 4 12 12 0 3 31
package 3 3 30 1 1

private 2 2 2 0 3 9
procedure 6 6 7 * 2 22
record 0 0 4 0 2 6

-. renames 0 1 0 0 0 1
return 0 3 3 0 2 8

*then 0 0 1 1 0 2
type 2 2 6 0 5 15
use 0 0 0 1 0 1
when 0 0 6 0 0 6

-while 0 0 0 1 0 1
*with 1 3 2 1 0 7

DISTINCT OPERATORS 19 23 35 16 20 45
-TOTAL OPERATORS 75 133 29 69 69 6250

% -

*%



*-Table 22. Operators and Operands in Detailed Design for Counting

Leaves. (Part 3 of 6)

~HALSTEAD METRIC [BOO 83] DESIGN PROBLEM ONE -DET DES

OPERANDS CP PP TP main FP system

APPEND 0 1 0 0 1 2
BOOLEAN 0 2 2 0 2 6
CLOSE 0 0 1 0 0 1
COUNT LEAVES ON

BINARY TREE 0 0 0 2 0 2
COUNTER(DISPLAY) 3 0 0 0 0 3

COUNTER(INCREMENT) 4 0 0 0 0 40

COUNTER(ZERO) 3 0 0 0 0 3
COUNTER-IO 2 0 0 0 0 2
COUNTERPACKAGE 4 0 0 2 0 6
COUNTER-TYPE 9 0 0 1 0 10
DATA ERROR 0 0 1 0 0 1

0DATA FILE 0 0 4 0 0 4
DEVICE ERROR 0 0 1 0 0 1
DIRECTI10 0 0 2 0 0 2
DISPLAY 3 0 0 1 0 4

C.ELEMENT(TQ.APPEND) 0 1 0 0 1 2
ELEMENT(TQ.TAKE) 0 1 0 0 1. 2

*EMPTY QUEUE 0 0 0 0 1 1
*END ERROR 0 0 1 0 0 1

FIFO PACKAGE 0 2 0 0 2 4

FILE 0 0 7 0 0 7
FILE TYPE 0 2 0 0 0 2
FORM 0 0 1 0 0 1
FROM 0 0 1 0 0 1
GET INITIAL 0 0 3 1 0 4
GET SUBTREE 0 0 5 0 0 5

IN FILE 0 0 1 0 0 1
INCREMENT 3 0 0 1 0 4

*INTEGER-IO 1 0 0 0 0 1

OnTeDvlpenUe n utmto fDsinMtis 9

'S&t e



Table 22. Operators and Operands in Detailed Design for Counting

Leaves. (Part 4 of 6)

-. OPERANDS CP PP TP main FP system

IS EMPTY 0 1 0 0 1 2

IS NOT EMPTY 0 3 0 1 0 4
IS SINGLE LEAF 0 0 3 1 0 4
ITEM 0 0 1 0 0 1
LEAF COUNT 0 0 0 4 0 4
LEFT 0 0 5 0 0 5

LEFT INDEX 0 0 2 0 0 26

LEFT INTO 0 0 3 1 0 4
LEFT SUBTREE 0 0 0 3 0 3
MODE 0 0 1 0 0 1
NAME 0 0 1 0 0 1
NAME-ERROR 0 0 1 0 0 1

NATURAL 1 0 0 0 0 1 or
NODE 0 0 4 0 0 4 I

*NODEVALUE TYPE 0 0 3 0 0 3

*OFF(PP.TAKE) 0 3 0 1 04
OFF(TQ.TAKE) 0 1 0 0 0 1
OFF(FIFO.TAKEj 0 0 0 0 1 1
ON(PUT) 0 3 0 2 0 5

ON(PUTINITIAL) 0 2 0 1 0 3

-~OPEN 0 0 1 0 0 1
PILE(CLOBT) 0 0 0 6 0 6

-~PILE(ISNOTEMPTY) 0 3 0 0 0 3

PILE PACKAGE 0 4 0 2 0 61A

PILETYPE 0 10 0 1 0 11 N7%
POSITIVECOUNT 0 0 5 0 0 5

PUT(PILEP(G) 0 4 0 2 06
PUT(COUNTER_10) 1 0 0 0 01

PUTINITIAL 0 2 0 1 0 3

*QUEUE 0[ 0 0 0 1 1

98 AtomaingSoftare esin Meric

1- 10



V- 6 'L- ' . . . - sq.. .2 -

Table 22. Operators and Operands in Detailed Design for Counting
Leaves. (Part 5 of 6)

HALSTEAD METRIC [BOO 83] DESIGN PROBLEM ONE -DET DES ni

OPERANDS CP PP TP main FP system -
QUEUE1 0 10 0 0 1 1
QUEUE2 0 0 0 0 1 1
QUEUEELEMENT

VALUE TYPE 0 0 0 0 4 4
QUEUEELEMENT TYPE 0 0 0 0 3 3
QUEUE TYPE 0 1 0 0 9 10
READ 0 0 1 0 0 1
RECORD INDEX 0 0 6 0 0 6
REST 0 0 0 0 1 1
RIGHT 0 0 5 0 0 5
RIGHTINDEX 0 0 2 0 0 2
RIGHTINTO 0 0 3 1 0 4

*RIGHT-SUBTREF 0 0 0 3 0 3 .
SPLIT 0 0 3 1 0 4
STATUS ERROR 0 0 1 0 0 1
STRING 0 0 1 0 0 1

*TAKE(PP) 0 3 0 1 0 4
TAKE(TQ) 0 1 0 0 0 1
TAKE(FIFO) 0 0 0 0 1 1 0
TEXTI10 2 0 0 0 0 2 S-

*THROW AWAY 0 0 4 1 0 5 ,

-/.TO(APPEND) 0 1 0 0 1 2
TREE(PUT) 0 3 0 0 0 3
TREECPUTINITIAL) 0 2 0 0 0 2
TREE(TAKE) 0 3 0 0 0 3
TREE(GETINITIAL) 0 0 3 0 0 3
TREE(GETSUBTREE) 0 0 7 0 0 7

*TREE(ISSINGLELEAF) 0 0 4 0 0 4
TREE (SPLIT) 0 0 5 0 0 5
TREE(THROWAWAY) 0 0 3 0 0 3

0

FOn The Development, Use, and Automation of Design Metrics 99

* 0

L54



P. .g - J ' 7 W V~uv.*. ."..

,el"°%"" N7. .W.':-

Table 22. Operators and Operands in Detailed Design for Counting
Leaves. (Part 6 of 6)

HALSTEAD METRIC [BOO 83] DESIGN PROBLEM ONE - DET DES .

OPERANDS CP PP TP main FP system

TREE (mainproc) 0 0 0 7 0 7
TREE IO 0 0 12 0 0 12

TREE-PACKAGE 0 7 4 2 0 13 -

TREE RECORD TYPE 0 0 5 0 0 5
TREE RECORD

(GET-INITIAL) 0 0 2 0 0 2

TREE RECORD S
(GET SUBTREE) 0 0 10 0 0 10

TREE QUEUE 0 6 0 0 0 6
TREE TYPE 0 7 17 3 0 27
USEE RROR 0 0 1 0 0 1
VALUE(FIFO) 0 0 0 0 1 1

VALUE(NODE) 0 0 2 0 0 2 ~
VALUE P .

(TREE RECORD TYPE) 0 0 2 0 0 2
ZERO 3 0 0 1 0 4
0 1 0 1 0 0 2
1 1 0 2 0 0 3
10 0 0 1 0 0 1
Put in implementation

detail here 0 0 2 0 0 2

DISTINCT OPERANDS 15 27 52 28 18 105 U_

'TOTAL OPERANDS 41 79 169 54 33 376

*100 Automating Software Design Metrics

-- .

a 
""0' 

o
%

•~~ ~ %:' %:
"%.* " .. ,%



. .1
Table 23. Halstead Metric Values for Detailed Design for Counting Leaves

HALSTEAD METRIC [BOO 83) DESIGN PROBLEM ONE - DET DES
".%

CP PP TP main FP system

DISTINCT OPERATORS 19 23 35 16 20 45

DISTINCT OPERANDS 15 27 52 28 18 105

'- TOTAL OPERATORS 75 133 279 69 69 625

TOTAL OPERANDS 41 79 169 54 33 376

-VOCABULARY 34 50 87 44 38 150

DESIGN LENGTH 116 212 448 123 102 1001

ESTIMATED LENGTH 139 232 476 199 161 952 1 ,

PERCENT OFF -20 -10 -5 -6' -58 5

DESIGN VOLUME 590 1196 2886 672 535 7236

ESTIMATED DESIGN LEVEL 0.04 0.03 0.02 0.06 0.05 0.01

INTELLIGENCE CONTENT 23 36 51 44 29 90

EST:MATED LANG LEVEL 0.9 1.1 0.9 2.8 1.6 1.1

ESTIMATED EFFORT 62181 40260 164166 10360 9814 583018

.I.%

On The Development, Use, and Automation of Design Metrics 101

%• % k% %



3.0 USING DESIGN METRICS, A SUPPORTING METHODOLOGY

This section outiines a methodology, consistent with the RADC software
quality framework, for using design-aid tools and design metrics. It
envisions a situation in which such tools and metrics are part of an inte- .7
grated software engineering environment which is used to support all phases of r'
software development. Using this approach, it is possible to

1. Evaluate competing software designs,

2. Estimate software project planning parameters,

3. Monitor software product quality.

Previous sections of this report have described and illustrated various -
software design media, and have shown how metrics can be defined for measuring

* certain software quality criteria. In particular, the CSDL tool DARTS was
introduced and used to illustrate the automatkc generation of McCabe and Hal-
stead metrics based on the information in a DARTS design database. An example

* was also given of the use of an Ada PDL as a design medium, and Halstead met-
rics were extracted in a similar fashion. Both the Halstead and McCabe met- t.

rics provide a means for assessing the complexity (or inversely, simplicity)
of competing designs. The Halstead metric is also capable of indicating con-
ciseness of a design, as discussed previously.

This section begins with the definition of a method for projecting project
costs and schedules based on metric data taken during the early phases of a
project. It then describes in more detail the anticipated use of design met-
rics by both software development and program office personnel.

3.1 PROJECTING PROJECT COSTS AND SCHEDULES

To estimate costs and schedules in the early phases of a software develop-
ment project, one must adopt a cost estimation method, gather any needed data,

- estimate required parameters, and carry out the required computations. Boehm 0
reviews a number of cost estimation methods [Boe 81], and recommends using a
combination of techniques including:

Using Design Metrics, A Supporting Methodology 103

- . %
. ., . --

%S
.7~~* M NN ?



.- * -- S- - - - -- - - - -

0 Top-down estimates based on expert opinion and previous experience, and

* Bottom-up estimates (module by module) using an algorithmic model.

Although there is no substitute for expert opinion and previous experi-
ence, algorithmic models have been found increasingly useful as a base for
estimating project cost and schedule. Boehm's COCOMO model [Boe 81] is an
example of an estimation method that has been widely used and adopted by many
organizations. It has the advantage of being well documented, and has been
validated using data collected from 63 completed projects. As an example, the
COCOMO intermediate model estimated software cost within 20 percent of project .
actual cost 68 percent of the time.

3.1.1 An Algorithmic Estimation Method

Halstead presents an algorithmic estimation method which has certain
-" .desirable features, although it has been criticized for some of its assump-

tions. It is based on two aspects of software science theory:

0 The effort measure E, and its relation to programming effort, and

,' * The potential volume V*, and the ability to infer software science met-
rics from V* and the implementation language level .

Halstead suggests that once E is known, an estimate for the programming
effort can be obtained from:

T = E/S

where T is programming time and S is the Stroud number. Halstead "used the
Stroud number as a measure of the number of elementary mental discriminations
a programmer would make per unit time. He cited the range for S as from 5 to
20 discriminations per second, and most commonly used 18 discriminations per
second (in which case T is measured in seconds). This approach has been crit-
icized recently as an incorrect application of the results of cognitive psy-
chology studies [Cou 83], although a certain amount of empirical evidence has
been amassed in its favor.

To obtain an estimate of E for an implementation, Halstead suggests using •
the potential volume V. and the implementation language level X The poten-
tial volume V* is a measure of the volume of an algorithm .in its minimal form,
namely, a "built-in" function which computes the algorithm from a list of its
input and output parameters. If the number of such parameters (operators) is
designated l2* , then the minimal vocabulary n* is computed as

n* = 2 + fl 2 "

104 Automating Software Design Metrics

0. %%



'4, %.- ". o

where the operand count is taken as 2 to account for the name of the procedure
and the assignment operator (or grouping symbol). The potential volume is *,.

computed from

V*= * log * A"'

The language level X was proposed as a parameter that would characterize
a programming language in terms of expressive power. Halstead defined it in --
terms of the program level L and the volume V as

= L 2V = LV*

By analyzing programs written in a number of different languages, he was able
to measure X as 1.53 for PL/l, 1.14 for Fortran, and 0.88 for CDC assembly
language, although these values had large variances. Subsequent research has
failed to corroborate these results for other sets of data, and the claim for
constancy of the language level must now be regarded as questionable [She 83]. "--

Nevertheless, Halstead gives the following formula for estimating E [Hal

E= (v*)
3/x2

In other words, by estimating X for the implementation language and by know-
ing V* from a count of the inputs and outputs of the algorithm, one can esti-
mate E for the implementation, and then calculate T.

In the following, it is proposed to use the potential volume and language
level in order to estimate the program length N instead of E, and thus avoid
use of the controversial Stroud number. Although a value must be selected for
the language level, it does not otherwise enter into the method and in partic-
ular does not need to be measured. The utility of the procedure must be
empirically determined.

The program length N can be directly related to length in thousands of
delivered source instructions (KDSI), and hence estimates of cost and schedule
can be derived using Boehm's COCOMO model or other models. For example, in

0 the basic COCOMO model

MM = 2.4 (KDSI) 1 "0 5

0•38 " "

TDEV = 2.5 (MM) "

Using Design Metrics, A Supporting Methodology 105 ...

e...,~- W° b.% b

V



F. - " ° - .. ,]

-W_

where EN is effort in man-months and TDEV is development time in months, and
the so-called organic development mode is assumed (see [Boe 81]). Note that
in talking about delivered source instructions the following comments apply.

1 1. Delivered means any software developed with the same rigor as as a
deliverable product, e.g., software developed with reviews, test plans,
documentation, etc. '. "

' 2. Source instructions exclude comments but include job control language,
format statements, and data declarations.

Note also that the above formulas exclude the effort required for the plans
and requirements phase, and that good management practices are assumed.

Halstead's length N may be related to KDSI as follows:

N = a x b x KDSI x 10 3

where a is the ratio of executable to total source statements (since only exe-
cutable source statements are counted in Halstead's method), and b is the num-
ber of operators and operands in one source statement. Halstead suggested

* using .5 for a, and for b, 7.5 for a high level language and 2.7 for assembly .-
language [Hal 77, Hal 78a]. Using the value for a high level language, one
finds

4p

KDSI (2.667 x l0-') N -.

To find an estimate of the length N, one first finds the volume estimate .
using Halstead's relation [Hal 77]

V/2 V..

By definition, the volume is related to the length '-

4'-', V = N log2 (n/2)

where q is the vocabulary. Employing the approximation, 1 = r = T/2
one has

N f log 2 (n) •

Thus for a given V- and X , one must find q such that

f (n) = f log 2 (T/ 2 ) log 2T - (V*)2/, - 0
f, M)=r]

Once fl is found, then N is found from the preceeding formula.

106 Automating Software Design Metrics

%-% %

% . . ° 6P !



Gaffney presents an alternative method for estimating N that has the
advantage of not involving the language level [Gaf 81], but it appears to be
of use only for relatively large modules.

One can apply this method to the design taken as a whole, but it is pref-
erable to use data from the architectural design to estimate the length of
each of the modules separately, and then add to get the total design length.

-.,- Thus, the technique provides initial estimates for the length (and hence the
project cost and schedule) which are refined and improved as the design pro-
ceeds. The following example will make this clearer.

3.1.2 An Example

To illustrate this method, the experiment controller example of section
2.4 will be used. The input and output data items for each node in the design
are stored in the DARTS database, so that it is a simple matter to determine S
.l* and hence V*. For this example, X was taken to be 1.3, corresponding to
a high level implementation language. The data for design one are presented
in Table 24, and for design two in Table 25.

Referring to Table 24, it is seen that when the counting method was -

applied to the top node in the design (component 1.1), N was found to be 300.2 0
which corresponds to about 80 lines of source code. When the method is
applied to the next level of the design, and the lines of code estimates are
totalled, an estimate of 110 lines of code is obtained. Similarly, when the
method is applied to three levels, the estimate is reduced to 95 lines of .

code.
0

Referring to Table 25, the top level estimate is the same, namely, 80
lines of code. However, the second and third level estimates are 165 and 167
lines respectively. These estimates reinforce the conclusions reached earli-
er, namely, that design two is more complex than design one. Furthermore,
they provide insight into the relative cost of implementing the two
approaches. The result is especially striking, since to three levels, design
two has only six components, while design one has eleven.

The estimates also enable the designer to identify the sources of complex-
ity in the design. When estimates jump from one level to the next (as with
design two), it signals an unexpectedly large increase in complexity. The
designer can then identify the modules which most contribute to the complexi- 0
ty, and determine if improvements can be made. -

A final point worth mentioning is that this technique depends on being
able to determine n* and hence V* for designs and design components. In par-
ticular, if data item names represent abstractions for complicated structures, .
the number of unique operands needs to be appropriatedly increased. This can •

.j '

Using Design Metrics, A Supporting Methodology 107

A.z

' ,t.".,, % ,% ' %-',- . . - ,. " .,-.' . .• ,r • . , . . .. .- .- .- .. , . .. . . .- - ,. J,,. -.. .. .'. . ,,...



-. - ,.-.- °

'0L

Table 24. Length Estimates for Design One

Component i V* T N KDSI K KDSI ,

1.1 13 48.106 60.9 300.2 0.080 0.080

1.1.1 3 4.755 5.24 7.3 0.002 0.110
1.1.2 5 11.610 11.6 29.3 0.008 " -
1.1.3 14 53.303 69.6 358. 0.096
1.1.4 4 8.000 8.09 16.3 0.004

1.1.1 3 4.755 5.24 7.3 0.002 0.095
1.1.2.1 4 8.000 8.09 16.3 0.004
1.1.2.2 5 11.610 11.6 '29.3 0.008
1.1.3.1 6 15.510 15.7 46.6 0.012
1.1.3.2 5 11.610 11.6 29.3 0.008
1.1.3.4 4 8.000 8.09 16.3 0.004
1.1.3.5 9 28.529 31.5 125.3 0.033
1.1.3.6 5 11.610 11.6 29.3 0.008 V
1.1.4.1 4 8.000 8.09 16.3 0.004
1.1.4.2 5 11.610 11.6 29.3 0.008 0
1.1.4.3 4 8.000 8.09 16.3 0.004

probably be done without too much difficulty, but further experience with the
technique is needed in order suggest practical methods for handling this situ- 0
ation.

3.2 USE OF DESIGN METRICS

Although design metrics can be used whenever design information is avail-
able, major improvements in being able to monitor and influence software qual-
ity will only occur when design tools and metrics are made part of an
integrated software engineering environment. The various Ada Programming Sup-
port Environments (APSEs) now under development provide an ideal opportunity .
for application of these techniques. Although the metrics would provide -.-
information of primary use to developers, program office personnel would,
using suitable contract clauses and data item descriptions, be able to request "
quality status information at periodic intervals based on information in the
project data base.* This would be greatly facilitated if standards existed for
generating the required information. '

108 Automating Software Design Metrics

Nr0

V.



• . . -r-r C. . . -rr i r r , . . . . . r - o ° '' " -'. -, . - % ,. b " . -

• -. .. - .".

Table 25. Length Estimates for Design Two

Component T* v* n N KDSI E KDSI

2.1 13 48.106 60.9 300.2 0.080 0.080

2.1.1 6 15.510 15.7 46.6 0.012 0.165
2.1.2 17 69.487 99.3 559. 0.149
2.1.3 4 8.000 8.09 16.3 0.004

2.1.1 6 15.510 15.7 46.6 0.012 0.167 .

2.1.2.1 10 33.219 38.0 161.6 0.043
2.1.2.2 14 53.303 69.6 358. 0.096 .,

2.1.3.1 4 8.000 8.09 16.3 0.004
2.1.3.2 5 11.610 11.6 29.3 0.008
2.r.3.3 4 8.000 8.09 16.3 0.004

The uses of design metrics in the three earliest phases of the life cycle

can be outlined as follows:

1. Software Requirements Specification

Requirements are generated using a suitable requirements specifica- '

tion language or tool. If the requirements are expressed as a
hierarchy of functions with inputs and outputs specified (as per S
MIL-STD-483/490, type B5), then Halstead metrics can be applied.
Alternatively, it is possible to develop a Halstead technique using
a prose requirements specification, adapting the form used in Sec-
tion 2.5.4.4.

These metrics would be used to generate estimates of KDSI for com- 0
parison with KDSI estimates generated by conventional means.

Particularly complicated functions would be identified for risk
assessment.

Review of these estimates would be a topic included at the Software S
Requirements Review.

Ugtd

Using Design Metrics, A Supporting Methodology 109 •"

* .|.... .. ..



... . . .- ., .. ,, , . - ,• - . .- . 4. -7 - 3

2. Architectural Design

Structured analysis (or some other technique) is used to identify
objects for a DARTS process-based model, or an Ada object-oriented
design. The design is entered into a design database. At fre-
quent and periodic intervals, Halstead, McCabe, and other design
metrics are applied to the design data.

The metrics are used to compare different design approaches in
terms of complexity and impact on project cost and schedule.

* The metrics are used to identify problematic, overly complex, or
inconcise areas of the design, in order to make improvements.

The metrics are used to monitor the progress of the design as time
proceeds.

.- Review of these estimates would be a topic included at the Prelimi-
nary Design Review.

3. Detailed Design

'.The detailed design would proceed as a refinement of the architec-
,-. tural design. The metrics would continue to be used in a similar

* - fashion.

"-Review of the metrics data would be a topic included at the Crit-
ical Design Review.

It is anticipated that the chief value of the design metrics would be to
call attention to the impact of design decisions as they are made. The met-
rics would supplement but in no way replace the judgment of experienced soft-
ware designers and managers. The ability to measure the impacts of design
decisions and to institute corrective actions early in the development process
would be a sign that a major improvement had indeed been made in the manner in
which software products are designed and implemented.

110 Automating Software Design Metrics

6 W

0 0

I I ISS.- K: t:.-S. % " -- - -- + - - - -- . . . .



." 4.0 CONCLUSIONS

This research effort has concluded the following. ---

1. Software quality can be assessed early in the life-cycle with metrics
like those of McCabe and Halstead. The collection of metric data can
be automated and captured from the databases of design tools like .-

DARTS. However, the databases must contain the information necessary
for metric measurement in a form recognizable by the design tool. For
example, control flow or data definitions which occur in free-form text
will not be included in metric calculation.

2. Out of the approximately 100 McCall metric elements, about 25% are good
prospects for automatic measurement with a design tool like DARTS.
However, manual assistance is required to measure most criteria in the .
framework since the criteria contain some subjective elements.

3. Metrics that measure data elements or some aspect of data-flow are gen-
erally more useful than those that deal with control flow, in the early
design phases. Interfaces between software components are typically
defined prior to the internal control structure of the components.
This would include, for example, Halstead's metrics.

4. When Halstead metrics are used during design and the Potential Volume
of each component is known, alternative counting techniques can be
developed which avoid some of the controversial issues surrounding the
Halstead counting technique.

5. Design metrics can be used when Ada or an Ada PDL is used during
design. Ada supersets, like Byron, are more useful than Ada itself .-.

during architectural design due to their ability to represent abstract
concepts and include prose commentary.

6. It is still early to judge the utility of design metrics. Small exam-
ples seem to work, but the size of the sample used for validation was
too small. A more rigorous validation effort might be set up as fol-
lows: During a real software development effort, use metrics with an

* automated tool and sample software quality at frequent intervals during
development to get a better idea of how useful early data is for esti-
mating the quality of delivered software products.'

7. A methodology has been presented for the use of quality metrics during
design. In particular, it is possible to use counts of operators and

60 operands to estimate the length of an implementation in terms of deliv- 0
- ered source instructions. From this parameter, project costs and sche-

Conclusions 111

)%) -. . o
0

* V. -.

F°~ %- °. % %'

• o ° . ° ° . .4..



.,%.-. 
%-

a -.-.%,,

..-.-.

a...°.°

,*" .0

,,'" 
..

S aII*

a..

a...-.

• • • . •. •, . . °," .. .- . •- .- ,°°.°° '° '%. .° . .. • • . . . - '. - ° -. • . . • " . •



5.0 DIRECTIONS FOR FURTHER RESEARCH

As this study has shown, design metrics have the potential for improving
control over the software development process. This section lists areas in .
which future research would enhance the practicality of using design metrics.

The prime need is for verification of the metrics from metric data col-
lected throughout the life-cycle of many real projects. This would provide a
statistically significant database from which equations which relate metric .-

values, planning parameters, and quality f-actors could be drawn. The examples
provided in the preceeding text indicate thiat the metrics could prove useful,
but they exhibit pathological behavior, such as extreme sensitivity to small
changes, which would be eliminated with a larger sample. Incorporating metric
tools into an APSE would encourage data collection.

Another area where work is needed is in relating the Software Quality
Framework to other, more direct, measures of the quality factors. For exam-
ple, reliability as measured in terms of mean time to next failure.

This research identified controversial issues surrounding the Halsteadidentification and counting technique. This evidence, as well as other

research, establishes the need to develop a consistent Halstead counting meth-
od for use throughout design to deal with problems where the Potential Volume
is not known.

This report has addressed metric measurement of design complexity. Met-
rics could be developed which evaluate the efficacy of the design procedures:
how the development methods used contribute to the quality factors. Similar-
ly, quality measurement could be expanded to cover the entire software, and
system development processes. A key support item for these endeavors is an
integrated database of real project data, from planning through maintenance,
with data collection for quality evaluation as an integral part of the proc- O
ess.

Another area which might be covered in more depth is how tradeoffs among
the quality factors may be measured and evaluated. This task was within the ...
original scope of this project, but it was not initiated due to a decision to

* consider Ada design metrics in detail.

Work should be undertaken to establish the best use of requirements and
design media for Ada. Ada has growing potential as a software design aid ., ..

itself. This task should consider whether a restricted subset of Ada, Ada as
defined, or Ada with additional features (e.g., Byron) is more useful and
appropriate as a design or requirements aid. 0

Directions for Further Research 113

*0 %

"-.< . ...

#' . . .J'4-4'#- ' * ""•." ,r. . " -4", . - ".", .". . " "-,• . "/",',.• . ."5".". ' / ( .. ', . "



APPENDIX A. GLOSSARY OF RELATED ACRONyMS AND TERNS "?)

APSE Ada Programming Support Environment:.,.

ANT Automatic Measurement Tool..-..

CACM Communications of the ACM

CDC Control Data Corporation "

.4 .4 ." .4. .

CDR Critical Design Review,,.' %

COCONO Constructive Cost Model

CSC Computer Software Component k---

CSCI Computer Software Configuration Item-...

CSDL The Charles Stark Draper Laboratory, Inc. L

DARTS Design Aids for Real-Time Systems "-''t

DID Data Item Description -[-

DOD Department of Defense [""

ECSL Extended Control and Simulation Language. - '

ESD Electronic Systems Division -"

HOL Higher Order Language -.....

KDSI Thousands of Delivered Source Instructions .

PDL Program Design Language.-;>

PDR Preliminary Design Review " "'

PERT Program Evaluation and Review Technique".

QA Quality Assurance -.',

RADC Rome Air Development Center

SQA Software Quality Assurance ...-

, 4'.

Appendix A. GLOSSARY OF RELATED ACRONYMS AND TERMS 115 .. 4.

%-". .. 51

APSE~ ~~~~~~ Adrgamn upr niomn



-.. SER Software Requirements Review 
..F.

'.".o..-

.'. STARS Software Technology for Adaptable and Reliable Systems .°'.

, '; ..- 
' .

-V 

I .--
"°S

. -'- %

.- 'S.--

":*; 
'

• •

_-...> 
,...

° .%

* • *

.5.. 5.

• •p'



91.

APPENDIX 
B. E X ILE DARTS TREES"""

'.o.

". ".o
--. 4'.

° ° ' .

* 

.

4 

0

*1~~• ;

" 
..

pp 

n~ 
. E a p e Da 

t 
r e 

17,.-..

,,%,,,



-M DenGN AiDs PAS

FOR UMAL-TI1E SVNTne PAGE ~ IAB

-PLwTRrit (FIXD) DATE 2 AR 1W

DATARAW 13 TIM ONAM
*OWNER IS AJRMM ALL GEEATO

al 32

TM~~~~ ~ ~ IF C 00E IUQO

Tmi my~ cr 5oo MAs IN L 0.0

4. %

* Figure 17. CAC16Example 14a, DARTS Representation

118 Automating Software Design Metrics

%~ 0

% %

% % ,



U 4
CSM DEIGN AIDS PACE 1
FOR RZAL-TIME S11ZM IJATE: 22 MARl IM~
PLOTTREB (FIXED) 1Ik.&, ISMAG
DATABASE IS TLOA TOPI40lJ: 4

*OWNER IS AJR13OZ ALL GNuiawrioNs

IF CITY Cz 50D

4.1 4.2

* THEN BILLA EQ BILLA ELSE IF QTY GT 200

42- 422

TUMMM~~~~~~,.' &IL QBLAMS FQYLE1

+.d am

422.1

THEN ILULA BU O

Figure ~ ~ ~ ~ ~ ~ ~ ~ 'I 18 UMEaml ~,DAT ersetto

Appendix~~~. B.Eaml-arsTee.1

%I

%:*



* 94 2

LSDL -DESIGN AIDS PAGE I
*FOR REAL-TIME SYSTEMS 1S X LARGER DATE Z2 HAR 1983

* PLO"WEE (FIXED) TRIM OR IL1.'O
DATABASE IS T15A O*UAL TO Y ropNoDia
OWNER 1S AJRIW ALL GENERATIONS

*~i IX as T0

.4.. .1 2

Z2%

is Y LARGER IS X LARGER
TKAN OR THAN OR
EQUAL TOEZ EQUAL TO Z

THEN IF YGOR EmSIF XGE z

ll .2 Z1I 222

EQAL INoSLY'ES. TIlER4 NO. THENI

YSALN.SALSMALL EQUALS SM4ALL AL S
EUL EQASYz x J

THEN SMALL EQ 74 ELSE SMALL EQ Y; THlE SMALL EQ Z' ELSE 5WALL EQ N:

Figure 19. CACM Example 15a, DARTS Representation '

120 Automating Software Design Metrics

%
w\.

%J



.. ~~~~~~~.~ .:- -qI. . -- *I V .

DESIGN* AID PACE

N~~~~(D -WZ~ 1I AJM ALG13AI

FOR RAL-TME SSTEM ~ %
PL~fREX FIXE) 1Ik~ U.I~S -%

% B.1BAE aS &3I V'N~~

INITALIZ is YJIO LLL IS Z LTIONS" 9W

THAI S9,1 HA MAL

YES THEN YES THE

.9 .

%
T BE L Q.

"d. .0%9.t A



* . - . - - - U - - * . . * * - U h

0
-U-p

''U-,

-t

'U

* I~*.

S

a,.

0
'U,.

V...

* 0

-- '-U'-

'U- ~

-UU.~ *U

q'

S
be. -

'U-

b-U-

'-U-'U

* S

5 S

U-'

- * "U-.

'U' -.S 0
'U

ph

U-
-- U.

S
U.." *~

U- * **. ?. ~

- - ~ .% ~ ~:'U:~:'U~U',>..



.7.7~~~~~~' K"777777,Z77'7 .Z

'0

. - ",J . ,.d* APPENDIX C. DARTS PL/I HALSTEAD NODULES

C.1 DESIGN TREES

Figure 21 is the design tree for the implementation, in DARTS, of the Hal-
stead metric. A description of the top four generations of nodes follows.

C.1.1 Node 9

Processing

The Halstead module determines the Halstead parameter values for a
user-specified subtree of a design represented as a DARTS tree. The
user also selects the counting method employed.

Input

Database representation of the tree.

User-specified top node of the subtree to be analyzed.

User-specified depth of the subtree to be analyzed.

User-specified counting method. 0

Output

On file FLOERR, the subt-ee designation and counting method, and the
parameter values for the subtree.

C.1.2 Node 9.1

Processing **.

This node represents a recursive invocation of a tree traversal mod- 0
ule. The tree traversal module visits each node of the user-specified
subtree, collecting the numbers of operators and operands.

Input

Database representation of the tree.

Appendix C. DARTS PL/I Halstead Modules 123 -

%S

.'. .

I ~-.. -. '.

S *: ' % • "" ' ° • " " •% ° " "° ' " " % % 
°

% * ' ' 
° 

' 
% 

% 
•  

%

I5 -



7. -- 7

4N;

-SD DESIGN AIDS PAGE I
FOR RAL-TIME SSTErM DATE 25 MAR IM
PLOTRES (FIXED) HALSTE li
DATABASE 1S HALTEAD TOPHODS 0
-OWNER is ARINZ ALL GEUATIOiU

%.b

CA Q2 Q3

REUSII UNTA.11

TIL TRAVERSA OPERANID AND FRA
L DON OPEATOR UTPU

* WI(1~il3N(2)WIUN T DN3-I CALL ADORATI WHI(1)~WbZW

UNINTURPRLI INTERPsrrtVz IM UNINiPn

a. V

CONINUED *
ON PAGE 2

Figure 21. Design Tree for Halstead Metric. (Part 1 of 2)

124 Automating Software Design Metrics

010



It, ..

DEDL -DESIGN AIDS PACE 2
FOR RZAL-TIME SYSTEMS CONTINUED FROYA PAGEU 1

* ILOTRrr (FIXED) INTEPRETIVE
DATABASE IS HALSTEAD
OWNER is AJRI3GZ

Al A2

%INCREMdENT IS IT BOTTOM~- ~
NODE OUN'r or DUTREE?

NODWE=NOOE#4I IF BOTTOM

AZ1 A2

*EIUTB

[INCREMNTW ADD NAME TO COIUNT TAB INCREMENT ADD NAME TO COUNT TAB
FUNCTIONAL OPERATOR OPERATOI1S.P DECISIONAL OPERATOR PRTSA

RUNCI=-FUNCN+I CALL ADORATR CALL PARSIT DECID=DNCI#+I CALL ADDRATRCALPRI

Figure 21. Design Tree for Pjalstead Metric. (Part 2 of 2)

Appendix C. DARTS PL/I Halstead Modules 125

.%

s-.. .- . .. .. .*. .. .. 1N A*... . 1. 1.~ 1 *.. - - - :..



7-4.- T

% %

Current top node of the subtree to be analyzed (initially the
user-specified top node).
User-specified depth of the subtree to be analyzed.

User-specified counting method. -

Output

List of operators with counts for each.

List of operands with counts for each.

C.1.3 Node 9.1.1

Processing

This node selects a counting routine to call depending on which count-
ing method the user specified.

Input

User-specified counting method. '.

Output

C.1.4 Node 9.1.1.1

Processing

This module implements the simple counting method in which the vari-
ables in the INDATA and OUTDATA lists are counted as operands.

Input

Database representation of the tree,

List of operators with counts for each,

List of operands with counts for each.

Output --s-Merc

List of operators with counts for each, '

List of operands with counts for each.

126 Automating Software Design Metrics

S.'q
S.'

,:..,' .-...-.'. .-.-j .:. ..,../.:. ',...:. . . ,..; :.. -. ........-..-...-..., ..-.... .-..-..-..-. ...... , ........... .....,...... ..../..-
41 , 1 " . ,- , - % ; . -% . - - -.. . '%' , '..-.. ' .. . .'.'..,..' ." ... .. .-.- .. .



'S.1

-77-7.~~o V .7 "dW'V.Vv 7

C.1.5 Node 9.1.1.2 "

Processing

This module implements the uninterpreted counting method in which
nodes are differentiated as being function or decision nodes, but the -

node tabs are ignored. For function nodes, the variables in the INDA-
TA and OUTDATA lists are counted as operands. For decision nodes, the
variables in the PREDVAR lists are counted as operands. -

Input

Database representation of the tree.

List of operators with counts for each.

List of operands with counts for each. -.,:

Output

List of operators with counts for each. p

List of operands with counts for each.

C.1.6 Node 9.1.1.3

Processing ,

This module implements the interpreted counting method, based on the
specification in Section 2.3.2.2, in which the node tabs are scanned
for instances of operators and operands. INDATA, OUTDATA and PREDVAR
lists are used to determine counts of operators and operands. The '
details of this processing are shown in Part 2 of Figure 21 on page 0

126

Input

Database representation of the tree.

List of operators with counts for each.

List of operands with counts for each.

Output

List of operators with counts for each.

Appendix C. DARTS PL/I Halstead Modules 127

% % "

I%

% %



- -. .o* .

List of operands with counts for each.

C.1.7 Node 9.2

Processing

This node adds the occurrences of flow-of-control to the operator,-.. . "
count, and calculates the Halstead parameters from the basic operator
and operand counts. •

Input

List of operators with counts for each.

List of operands with counts for each.

Output

Halstead parameter values.

C.1.8 Node 9.2.1

, .Processing

This node calculates the number of flow-of-control instances from the
number of nodes. 0

"* Input "'-

Number of nodes traversed.

* Output

Number of flow-of-control transfers.

*C.1.9 Node 9.2.2

SProcessing.

This node adds "CTL" to the list of operators.

* Input -

List of operators.

128 Automating Software Design Metrics -.

A,-." •Q *'A* .'% -

-•.*



.. T .

output

List of operators.

* C.1.10 Node 9.2.3

* Processing

This node adds the number of flow-of-control instances to the number0
of operators accumulated for the subtree, depending on the counting
method being used.

* Input

Number of flow-of-control transfers.0

List of operators with counts for each.

* ~Output S .5
* .. ~. % -

E List of operators with counts for each. .

C.1.11 Node 9.2.3.1 .

See Node 9.1.1.1.

C.1.12 Node 9.2.3.2

* See Node 9.1.1.2.

C.1.13 Node 9.2.4

5- Processing

This node calculates the Halstead parameters from the basic operatur
and operand counts.

Input

List of operators with counts for each.

List of operands with counts for each.

Appendix C. DARTS PL/I Halstead Modules 129 -

%0

% %~~5



Output

Halstead parameter values.

C.l.14 Node 9.3

Processing

This node writes the Halstead parameters in tabular form onto the out- .
put file.

Input

Halstead parameter values.

Output

On file FLOERR, the subtree designation and counting method, and the
parameter values for the subtree.

I!

d.'-- !

U.'..

• ..%

U=..

a.. * -p•.!% I i" . == i i l i l ' ' I l
- I

-
- l '

. . - I•



-- ".- - -.

.'.-. APPENDIX D. DARTS PL/I MCCABE NODULES §1
D.1 DESIGN TREES

Figure 22 shows four levels of the design tree for the implementation, in -'-

DARTS, of the McCabe metric. A description of each node follows.

D.1.1 Node 2

-*-.-Processing

The McCabe subtree determines the McCabe metric interval bounds for a
user-specified subtree of a design represented as a DARTS tree. The
user-specified subtree is a module by definition, for this metric "
evaluation. A module info data area is created and stacked whenever a
module is encountered in the user-specified subtree, as indicated by

* "BLK" or "SEG" in the nodes tab. When the end of the module is
*- encountered, an output line is created from the data in the module -0

info data area, and the data area is popped off the stack and
destroyed. Running totals of the numeric quantities are kept for the
subtree being analyzed. They are printed at the end of the process-
ing. r

Input

Database representation of the tree. .-

User-specified top node of the subtree to be analyzed.

User-specified depth of the subtree to be analyzed.

Output

On file FLOERR, the module name, number of decisions, number of simple
• predicates and metric interval -,..ues for each module encountered, and

the total metric interval value for the user-specified subtree. Mod-
ules which are invoked, but not present in the subtree, are tagged
with a message instead of the metric interval valUe. This information
shares file FLOERR with the Halstead metric output, but each function
starts a new page when invoked.

Appendix D. DARTS PL/I McCabe Modules 131

71 S I l

.. ."' -" . * . '.'.." - ' a,',.'a- --, '-.. - . . ,- "•""' , ," . "W a.a, ' " . .."-" -" "."'-'\'a: "-" ",p .~ a-a - -' ' , ... '' ' 'v
' " "",'," ., ." ," ,",-',, '." , - ' ' '"' '" ", '' , ' " ," " ' .1% :, ;'J. '*- %. -.' a-a* %'a.-. '-'.'a'.' a-.a"a " .



CD DESIGN AIDS PAGE A
FOR RZAL-TIME SYSTEM DATIL 2 AMS jU
PUWrMRU (FIXED) hutB Tim 170
DATABASE 1S )LCCAB TOPHOS:
OWNIEs NumSol ALL GIRUATIONS

PUT b=I UWN RT UINS

IN0/ 3GI AP OTDB

ZZILWZ2Q2D2202

-aEI
NO8VSI "IN OE II

SU11TRI

ANT 006INVWGETRECRSIV CASND r MDUL

000NS, #RXM RAVESE SMER OOKKWI'

0 zzaazo0

GE OUS.ACbULT ~
PREDINFONEW ODUE FO THI LIN AN

Figure 22. Design Tree for McCabe Metric.

0%

.5.132 Automating Software Design Metrics .

0.a

Z %'% % %

% . .. . ? . . ?. . .. ..



D.1.2-Node 2.10

Processing

The Initialize subtree starts the output with a page header on a new
'page.

Input •0
None.

Output

- Page header on file FLOERR.

D.1.3 Node 2.20

Processing

, The Traverse subtree subtree visits each node of the user-specified S

subtree, collecting the metric data, and making the output lines. It
also collects lists of the modules which occur in the subtree, and the
modules which are referenced in the subtree..'.1 ." .4-

Input

Database representation of the tree.

User-specified top node of the subtree to be analyzed.

User-specified depth of the subtree to be analyzed.

Output

Linked list of output lines for each module which occurs in the sub-
tree, alphabetically ordered by the module name. Each output line
contains the module name, the number of decisions, the number of sim-
ple predicates, and the metric interval value.

List of modules invoked in the subtree, in reverse of the order in
which they are detected.

0% %

Appendix D. DARTS PL/I McCabe Modules 133

t,.:

Ab" , %. " ""."" " """
"

"J"°"""'" '" " " " "°" " " "" " ' "% •"



,1 .'. 'r r''.' -.- *- r' ' -w .U.--r :

D.1.4 Node 2.20.10

Processing ]
*--".4 * The Node visit 1 subtree determines whether this node starts a module,

whether it invokes a module, the number of decisions (possibly complex -

predicates) for the node, and the number of simple predicates for the -
node.

Input

Database representation of the tree.

Current module info data area.

List of modules invoked in the subtree.

Output

Current module info data area. '

.4 '- List of modules invoked in the subtree.V.-,

D.l.5 Node 2.20.10.10

Processing

The Get module pred info from tab subtree determines whether this node
starts a module, whether it invokes a module, the number of decisions

'4: ~(possibly complex predicates) for the node, and the number of simple
predicates for the node. It also adds items to the list of invoked

*modules, if this node invokes any. If there is a tab on the node, it
gets the information from the tab. If there is no tab, the node does
not start or invoke a module; the number of decisions is determined by
the node type and number of offspring; and the number of predicates is

the same as the number of decisions.

Input

Database representation of the tree.

Current module info data area.

' List of modules invoked in the subtree.

14 m. St e s M.=',•.',134 Automating Software Design Metrics.

*.. .. *. 44.... . * ~~,.,-'. , "



]'[" Output- " '

Current module info data area.

List of modules invoked in the subtree.
.? .

". ,--

D.1.6 Node 2.20.10.20

Processing

*q The New module processing subtree creates and initializes a new module
info data area if this node starts a module.

Input

Current (old) module info data area.

Output

* Current (new) module info data area.

D.1.7 Node 2.20.10.40

Processing

The Accumulate for this subtree subtree adds the numbers of decisions
and predicates for this node to the numbers of decisions and predi-
cates accumulating for the current module. -

*" Input

Current module info data area.

Output 
J

Current module info data area.
* 0

D.1.8 Node 2.20.20

Processing

The ?averse offspring subtrees subtree recursively calls the traverse
subtree module for each of the offspring of the current node.

Appendix D. DARTS PL/I McCabe Modules 135

.. V

A ,-%-N. %



j. i

"" A
Input

User-specified top node of the subtree to be analyzed.

User-specified depth of the subtree to be analyzed.

Output

Linked list of output lines for each module which occurs in the sub- • "
tree, alphabetically ordered by the module name. Each output line
contains the module name, the number of decisions, the number of sim- '.!
ple predicates, and the metric interval value.

• . . .- . '

List of modules invoked in the subtree, in reverse of the order in ..

which they are detected.

D.1.9 Node 2.20.30

Processing

6 The Node visit 2 subtree does any processing necessary at the return .
through the node. In this case, it turns the current module info data
into an output line; destroys the current module info data area; and
adds the numeric quantities for this subtree to those accumulating for
the total line, if this node is the end of a module.

*.. Input

Current module info data area.

Totals data area. .,-.'.

Output

.-* Output line for the current module, containing the module name and -. S.

metric interval value.

*Totals data area.

D.l.lO Node 2.20.30.10

Processing

" e Make output line and cleanup subtree turns the current module info..
data into an output line; destroys the current module info data area;

136 Automating Software Design Metrics

%* %

..-.-,.S*J**%*- . S.
,',.~*~;*

*. . . . . . . . . .-- S.- . .'S
.'.. ..' '..'...,...- .......,.., .,.. .'.>,.... ,#,.',,,-', X ., ...,,,,,, , .,',..,, , ,, ,. ,. . . .. ..,., .., ., ,,.,,., ,, ,,% .. ,,.,.,,.



_'. %*q* .. ., "- ,,.: ",--'.- V -. -. --- -- ' '-:.' j . - :

and adds the numeric quantities for this subtree to those accumulating
for the total line, if this node is the end of a module.

Input

Current module info data area.

Totals data area.

Output

Output line for the current module, containing the module name and
metric interval value.

Totals data area.

D.1.ll Node 2.30

Processing

The Compare SEG vs INV subtree creates an output line for every module
which was invoked but not present in the subtree.

Input

List of output lines for modules present in the subtree.

List of modules invoked in the subtree.

Output

List of output lines for modules present in the subtree, with an out-

put line added for each module which is invoked, but not present, in -
the subtree. The added lines contain the module name and a footnote
reference number. %

Flag indicating that the footnote message to that effect should be
printed. '

D.1.12 Node 2.40

Processing

The Cleanup subtree makes the total output line for the subtree ana- • "

lyzed.

Appendix D. DARTS PL/I McCabe Modules 137 K'.

N.

"4.-*4 * "* * , * , -,-o - -=# -. -•. . . . . • .. . . . . . . r o

-. ,,,.,.,- ,, ., -.. .. .. •.. . ,, 4., , _., ,. .,. ,. , .". ,,;.., '.,,-, . ._,- ,.. . .,.,. • ...... - , . , ,. .. .... .

:_. _o_ • ... . .. .. -=i _ #" P 
=  

i " - ,- r ,# °.' ,- o.. *,* - -.- -,' % . - ". % "
', • *%,. - * -,r ., % % % %. " % ' % % % . .**% % % ." . .•= %*. -, . • • . '. ,*•-. =•- - -S



, *. .*- ,*. -, " t -.- .. . ... .h -.-. *

*. ..

Input

Totals data area.

Output

Totals output line.

D.1.13 Node 2.50

Processing

The Format output subtree writes the module and total output lines to .
the FLOERR file.

Input

" Linked list of output lines for each module which occurs or is invoked
in the subtree, alphabetically ordered by the module name.

* Totals output line.

'-. Footnote flag.

Output

On file FLOERR, the module name, number of decisions, number of simple S
predicates and metric interval values for each module encountered, and
the total metric interval value for the user-specified subtree. If
indicated by the flag, the "invoked but not present" footnote is

% % printed.

*, i

-.

• .. " . ,

138 Automating Software Design Metrics

% % % ".

* 0 - " ' " ' , '.'% ,-%" ' "• % "- -"" "" % "- % % " % ",



APPENDIX E. DARTS DATA-PLOW TABLES FOR WEERINENT CONTROLLER EXAMPLE

16 1@

N-,



. .. .- - - - - - -

V~ KV777

Table 26. Data-Flow Table -Design 1 (Part 1 of 2)

iL SIG-AIDS TOPIDE 10: 1.1 PAGE 1
FOUAL-TIME SYSTEMS ALL GENERATIONS DATE: 08 SEPT 198

DATA FIO TALE DATABASE IS SAMPLE TIM 11 21:39
USER IS: A.JR1392J

TOPtdOSE: EXPERIMENT CMROLLER 1 IINATAs EXPTAWE OUTDATA: OINTERVAL
EXPcOuW $STOP
SINT_8 ISTEP Otto
SINTT #REPORT
"INrU XPSTATUS

- " s. SENSORDATA

NAME INPUTS PRODUCER OUTPUTS CONSUMER

ITIALIZATION RESULTSTABLE MEASURE I

GET CELL DATA 1 OSEUOhOJATA SUPPLIED SENSORDATA MEASURE I . -.e

MEASEE I RESULTS TABLE INITIALIZATION RESULTSTABLE MEASURE -

. SENSODATA GET CELL DATA 1

CONTROL. EACH EPERIMENT EXP_€OW. lr MORE EIPRIENTS , %

INITIALIZE E)ERIIENT EXPTABLE SUPPLIED STEPS POSITION BUREE TTE.-- ENOUGH

READINGS TAKE IEASUREIENTS
TEST MEASURE

INTERVAL START TIMER .

POSITION BlUETTE STEPS INITIALIZE EXERIIENT

SEND MOTOR COMM STEPC REQUESTED

MA-T FOR 8UETtt lNIT SINT) SUPPLIED

ENEJGIO STEPS INITIALIZE EXPERIMT STEPS POSITION BURETTE
ENOIUH ENOUGH

-,START TIMER INTERVAL INITIALIZE EXPERIMENT WINTERVAL REQUESTEO

TAKE HIEASUEMENIS READIGS INITIALIZE EXPERIMENT
TEST ME ASURE

M NAT FOR TIMER INIT SDI"T SUPPLIED

GET CELL DATA 2 USENSOR_DATA SUPPLIED SENSO_DATA IEASURE 2

-. MEASURE I RESULT$_TA&LE MEASURE I JRESULTSTABLE IfEASURE 2 '

C..-lI

0 -..'.

*%5

%

140 Automating Software Design Metrics

5.

%. %% %

S. S5'.

"%.,~~~ .111.v.-

% . S. %I %

:.: . :-" ...- ,.. --,.-.. - , v -. .- , -,, .',-/-'-.',% -.-...;.;. : -k- :S.*." .'. -" .'-- ; --  ..... %O,,
• ,".. .. ".". . ... " -. "....".• '.'-...":.'...','.' '.&M',..' .KM" Ni' ,-.,.' .VV '..;v .,. .A1,%,.",..



S.2- . .P

Table 26. Data-Flow Table - Design 1 (Part 2 of 2)

CSDL a. SIQ-AIDS TOPNDE 19: 1.1 PACE 2

jAA LiTeLDAAAEI: S LETl:1:13FOR REAL-TIM SYSTEM ALL GMJRATIGNS DATE: 08 SEPT 198DAAFO AEDATABASE ISt SAMPLE 1"IEj 1.21:39
V USER IS: AAI1392

AM ITS PRODUCER OUTPUT COMDN R

MEASURE 2 MEASUfE 2 COMPUTE ILISTI

SENSMDDATA GET CELL DATA 2 COMPUT 1
LIST 2

E-C K FOR USER INTERUPT *INTU SPPLIED UaER.NTERUPT SERN DEMPT PmociEmmE

"US-ER NTERRUT PROCEDE USEINTERUPT CHECK FOR U INrMR-UPT

* tCOMPUTE I RESSLTSTALE MEASURE 2 STATISTICS LIST'.

LIST I RESULTSTJABE MEASURE a EXP-STATU SEND LIST TO PRINTER I

STATISTICS C MPUTE

SEN LIST TO PRINTER I EXPSTATUS LIST I GESTA1US REQUESTED t.

TEST MEASUIE READINGS INITIALIZE EXPERIIENT READINGS TAKE MEASUREMENTS
TEST MEASUE TEST MEASU-E

ME 1E IXPERIENTS ECOUN NRE EXPRIENTS EXPCOUNT CONROL EACH EXPERISENT
HOE EXPERIMENTS

STOP TIMER STOP REEJESTED

C cHUTE a RESULTSTABLE MEASURE I STATISTICS LIST 2

LIST 2 EESULTSTJALE MEASURE I REPORT SEND LIST TO PRINTER I .'.-..

STATISTICS c i 2m"'O a

sED LIST TO PRINTER 2 REPORT LIST I IREPQRT REEESTED

% % %

-.'!; I 4' _t.

4 ."%.t

*Appendix E. DARTS Data-Flow Tables for Experiment Controller Example 141 . ."

* 0

,,,. 0



Table 27. Data-Flow Table - Design 2 (Part 1 of 2)

[CSOL . AESIGN-AIUS TOPNOOE 10t 2.1 PAGE 1
FOR REAL-TIM SYSTEMS ALL GENERATIONS DATE: 08 SEPT 198
DATA FLOM TABU. DATABASE IS: SMPLE TIE: 11:22:07

USER IS: AJR1392 -

TOPNiOK: EV RIMENT CONTROLLER a INOATA: EXPTABLE OUTOATA: IINTERVAL
EXP..COwET aSTOR
#INI" ISTEP-"-
vINTT #REPORT
vzNTU hE)W.STATUS
ISENSO .DATA

NAME INPUTS PRODUCER OUTPUTS COSLMER

INITIALIZATION RESULTS-TABLE MEASURE

COMPUTE 2
LIST Z

FIRSTIIME PREPARE FOR MEASUREMENT
FIRSTTIHE OR NEN EXP
POST MEA'SURE PROCEDURE

NEbqE_ PREPARE FOR MEASUREIENT

READIS TAKE MEASUREMENTS
TEST MEASURE

CONTROL EACH E)2ERIMENT EXPCUf NNE EXPERIMENTS . .

PREPARE FOR IME N1~W FIRSTTIM INITIALIZATION
SET FLAGS *-.

ENEXP INITIALIZATION
INITIALIZE E)PERIMENT
SET FLAGSSN V.XERIHE" N

"
"-

FIRSTT'II OR MM E FIRSTIM INITIALIZATIOI N
SET FLAGS

-IITIALIZE E.PEIMNT -TALE SUPPLE mELEXP PREPARE FOR 2ASUREmENT

STEPS POSITIGN BURETTE '.

READINGS TAKE MEASUREMENTS
TEST MEASURE

- INTERVAL START TIMER

%

..........

'N

142 Automating Software Design Metrics

% %
%*.-.

sJI it!-U *"

[.,..............,.,. *....., ..... , ., .. ,. .. , . .. . : * . - . ." . * . % ; 'a . **j.



m .°.

Table 27. Data-Flow Table - Design 2 (Part 2 of 2)

* CSSL .0 DESIGN-AIDS TOPNE ID 2.1 PAGE 2
FOR REAL-TIME SYSTEMS ALL GENERATIS DATE; 00 SEPT 196
DATA FLON TABLE DATABASE IS: SAMPLE TIME: 11:2Z,.7

USER IS: AJR139Z

NME INPUTS PRODUCER OUTPUTS CONSUMER

POSITION BURETTE STEPS INITIALIZE EXPERIMENT

SEND MOR COMM AN STEPCMD REQESTED

MAIT FOR BURETTE 1MT IINTB, SUPPLIED

ENOU10M STEPS INITIALIZE EXPERIMENT STEPS POSITION BURETTE
ENOUGH ENOUIH

START TIMER INTERVAL INITIALIZE EXPERIMENT $INTERVAL REQUESTED

MAXT FOR TIMER D4IT I BINITT SUPPLIED 0

NAXT FOR TIMER INT 2 vINTT SUPPLIED "

TAKE MEASURMIENTS READIS INITIALIZATION
INITIALIZE E)XERIMENT
TEST MEASURE .",,-

GET CELL DATA §SENSIORDATA SUPPLIED SENSR DATA MEASURE -

MEASURE RESULTSTABLE INITIALIZATION RESULTS.TABLE MEASURE
MEASURE COhPUTE I

LIST 1
SENSORDATA GET CELL DATA CO1PUTE 2

LIST 2

POST MEASURE PROCEDURE FIRSTTIIE INITIALIZATION
SET FLAGS -

SET FLAGS FIRSTTIE PREPARE FOR MEASUREMENT
FIRSTTIME OR 1JENh EXP
POST MEASURE PnCCEDURE

NEK-EXP PREPARE FOR MEASUREMENT

CHECK FOR USER INTERRIPT *INITU SUPPLIED USERINTERRUPT USER I11TERRUPT PROCEDURE

- USER INTERRPT PROCEDURE UERINTERRUPT CHECK FOR USER INTERRUPT

COIUTE 1 RESULTSTARLE MEASURE STATISTICS LIST I

LIST I RESULTSTABLE MEASURE EX STATUS SEND LIST TO PRINTER 1

STATISTICS COMPUTE 1

- SEN LIST TO PRINTER 1 EXPSTATUS LIST I #EXPSTATUS REQUESTED

. • , .. . _ ,

* %
J4,

Appendix E. DARTS Data-Flow Tables for Experiment Controller Example 143 ...
%4

. . % %.

• . . *.'., .. *.-. * .'. ". ". . "./.. . ". ". ." ..
, .* , .o ,o , , o - .. . * o-'-'. ...... . . -



. °

LIST OF REFERENCES

[Boe 81) Boehm, B. W., Software Engineering Economics, Prentice-Hall,
Englewood Cliffs, N.J. 07632, 1981.

[Boe 83a] Boeing Aerospace Company, "Guidebook for Software Quality Meas-
urement," Vol. II, February, 1983.

[Boe 83b] Boeing Aerospace Company, "Software Interoperability and Reusa- "

bility," Vol. I, March, 1983.

[Boo 83) Booch, Grady, Software Engineering with Ada, The Benja-
min/Cummings Publishing Company, Inc., 1983.

(Cai 75) Caine, Stephen H., and E. Kent Gordon, 1975. "PDL--A Tool for
. Software Design," AFIPS Conference Proceedings Vol. 44, 1975 National Computer

Conference.

[Cai 77) Caine, Farber, and Gordon, "PDL Program Design Language Reference

S.. Guide," Version 3, February, 1977. i0

(Cho 78) Chow, T.S., "Testing Software Design Modeled by Finite-State
Machines," IEEE Transactions on Software Engineering Vol. SE-4, No. 3, May

% 1978, pp.105-109.

[Cou 831 Coulter, N.S., "Software Science and Cognitive Psychology" IEEE
Transactions on Software Engineering Vol. SE-9, No. 2, March 1983, pp.166-171.

[CSDL82] The Charles Stark Draper Laboratory, Inc., 12 January 1982.
Design Aids .for Real-Time Systems (DARTS): A User's Guide, *Version 3.
CSDL-C-5441, Cambridge, MA. January, 1982.

[DOD 82a) Department of Defense, "Strategy for a Software Initiative," 1
October, 1982.

[DOD 82) NIL-STD-SDS Joint Logistics Commanders, Proposed Military Stand- .-.

ard on Defense System Software Development, and attached Data Item
Descriptions, 15 April, 1982. -

R-DID-107 Software Requirements Document
R-DID-110 Software Top Level Design Document
R-DID-ll Software Detailed Design Document .*

- [DOD 83) Department of Defense, "Software Technology for Adaptable, Reli-
able Systems (STARS) Program Strategy," 1 April, 1983.

*.S

List of References 145 %

I %-

LAN

% % VI-OU APV % .



T--r

[Els 78] Elshoff, J. L., "An Investigation into the Effects of the Count-
ing Method Used on Software Science Measurements," SIGPLAN Notices, Vol. 13,
No. 2, pp. 30-45, February, 1978.

[Fit 78] Fitzsimmons, A., and T. Love, "A Review and Evaluation of Soft-
ware Science," ACM Computing Surveys, Vol. 10, No.1, pp. 3-18, March, 1978.

[Fur 81] Furtek, F. C., J.B. DeWolf, and P. Buchan, "DARTS: A Tool for

Specification and Simulation of Real-Time Systems," Proceedings of the AIAA
Computers in Aerospace III Conference, October, 1981.

[Gaf 81] Gaffney, J. E., Jr., "Software Metrics: A Key to Improved Soft-
ware Development Management," Computer Science and Statistics, Proc. 13th Sym-
posium on the Interface 1981, Springer-Verlag, New York, pp. 211-220.

[Gor 83] Gordon, M., "The Byron Program Development Language," Journal of
Pascal and Ada, pp. 24-28, May/June 1983. ,

[Gor 79) Gordon, R. D., "Measuring Improvements in Program Clarity", IEEE
Trans. Software Engineering, Vol. SE-5, pp. 79-90, March, 1979.

[Hal 77] Halstead, M. H., Elements of Software Science, Elsevier North
Holland, Inc., Operating and Programming Systems Series, New York, 1977.

[Hal77a] Halstead, M. H., "A Quantitative Connection Between Computer Pro-
grams and Technical Prose," Proceedings of Fall COMPCON 1977, pp. 332-335.

[Hal 78) Halstead, M. H. "Management Prediction - Can Software Science
4. Help?" Proceedings IEEE COMPSAC 78 (2nd International Computer Software and

Applications Conference), 1978, pp 126-128.

[Hal 78a] Halstead, M. H. "Software Science -- A Progress Report," Second
Software Life Cycle Management Workshop, Atlanta, GA, August, 1978, pp. 0
174-179. .S

[Ham 82] Hamer, P.G. and G.D. Frewin, "M.H. Halstead's Software Science -
%%V. A Critical Examination," Proc. of the Sixth International Conference on Soft-

ware Engineering,, Tokyo, Japan, pp. 197-205, September 1982.

[Ker 74] Kernighan, B. W., and P.J. Plauger, "Programming Style: Examples
and Counterexamples," ACM Computing Surveys, Vol. 6, pp. 303-319, December,
1974. .

[MCC 76] McCabe, T. J., "A Complexity Measure", IEEE Transactions on Soft-
ware Engineering, Vol. SE-2, pp 308-320, December, 1976. S

146 Automating Software Design Metrics

.. .

% % %
-7 ....*.. -... ... . . . . . . .



*~~~~ C C C V . -

[McC 80] McCall, J. A., and M. Masumoto, Software Quality Metrics Enhance-

ments, RADC-TR-80-109, Rome Air Development Center, 1980.

[McC 77] McCall, T. J., P. K. Richards and G. F. Walters, Factors in Soft- .
ware Quality, GE Technical Information Series 77CIS02, June, 1977.

[McC 79] McCall, T. J., and M. T. Matsumoto, Software Quality Metrics
Enhancements Final Report, September, 1979.

[Men 75] Mendelbaum, H.G., and F. Madaule, "Automata as Structured Tools •

for Real-Time Programming," Proc. of the 1975 IFAC-IFIP Workshop on Real-Time
Programming , Pittsburg, PA. August, 1975, pp. 59-65.

[Mye 77] Myers, G. J., "An Extension to the Cyclomatic Measure of Program
Complexity", SIGPLAN Notices, The Association for Computing Machinery, Inc., -

pp 61-64, October, 1977.

[San 83] San Antonio, R. C., and K. L. Jackson, "Application of Software
" Metrics During Early Program Phases," Proc. of NSIA OSD Conference, Washing-

ton, D. C., February, 1983.

- [She 83] Shen, V.Y., S.D. Conte, and H.E. Dunsmore, "Software Science -

Revisited: A Critical Analysis of the Theory and Its Empirical Support," IEEE .

Transactions on Software Engineering Vol. SE-9, No. 2, March 1983, pp.155-165.

[Szu 80] Szulewski, P. A., M.H. Whitworth, P. Buchan, and J.B. Dewolf, Qual-
ity Assurance Guidelines and Quality Metrics for Embedded Real-Time Software

* Designs, CSDL-R-1376, The Charles Stark Draper Laboratory, Inc., May, 1980.

[Szu 81] Szulewski, P. A., M.H. Whitworth, P. Buchan,and J.B. Dewolf, "The
Measurement of Software Science Parameters in Software Designs," ACM SIGME-
TRICS Performance Evaluation Review, Vol. 10, No. 1, Spring, 1981.

[Tau 77] Tausworthe, Robert C., Standardized Development of Computer Soft-.
ware, Prentice-Hall, Englewood Cliffs, New Jersey, 1977.

[Tei 77] Teichrow, D., and E. Hershey, "PSL/PSA: A Computer-Aided Tech-
nique for Structure Documentation and Analysis of Information Processes Sys- .*'- .-.
tems," IEEE Transactions on Software Engineering, Vol. SE-3, No. 1, pp 41-48,

* January, 1977.

[Weg 82] Wegner, P., "Ada Education and Technology Transfer Activities,"
ACM Ada Letters, September, 1982.

List of References 147

,... °% . . . •° - . * * . . . .. . . . . . . ..-.. -°- -. % - . .. .. °... . -. . . % . % . -° - - - - ,
-- " " , i ," * . " ,* , . . " . . " ." . ° *, " ° . ° , " ° .-** * °. p- . , ° .

°
° • .- -

° V .* •



r 4F

BIBLIOGRAPHY

* (1) Barnes, J. G. P., Programming in Ada, Addison-Wesley, 1982.f"..- ..-.

( (2) Beser, Nicholas, "Foundations and Experiments in Software Science", ACM
* SIGMETRICS Performance Evaluation Review, Vol. 11, No. 3, Fall 1982, pp

48-72.

(3) U. S. Department of Defense, Ada Programming Language,
ANSI/MIL-STD-1815A-1983, 22 January 1983, American National Standards
Institute, Inc., New York NY 10018.

(4) Downes, V. A. and S.J. Goldsack, Programming Embedded Systems with Ada,
Prentice/Hall, 1982.

- (5) Gilb, T., Software Metrics, Winthrop Publishers, Inc., Computer Systems
Series, Cambridge, NA., 1976.

(6) Gross, D. R., M. A. King, M. R. Murr and M. R. Eddy, "Complexity Measure-
ment of Electronic Switching System (ESS) Software", ACM SIGMETRICS Per-
formance Evaluation Review, Vol. 11, No. 3, Fall 1982, pp 75-85.

(7) Hartman, S. D., "A Counting Tool for RPG", ACM SIGMETRICS Performance
Evaluation Review, Vol. 11, No. 3, Fall 1982, pp 86-100.

(8) Howden, W. E., "Contemporary Software Development Environments", Communi-
cations of the ACM, Vol. 25, No. 5, May 1982 pp 318-329. .p-

(9) IIT Research Institute, "Software Engineering Research Review: Quantita-
tive Software Models,", order no. SRR-1, Data & Analysis Center for Soft- -
ware (DACS), Rome Air Development Center, Griffiss AFB, New York, 1979.

(10) Intermetrics Incorporated, Byron Reference Manual, Cambridge, MA 02138,
August, 1983.

(11) Laurmaa, Timo and Markku Syrjanen, "APL and Halstead's Theory: a Measur-
ing Tool and Some Experiments", ACM SIGMETRICS Performance Evaluation
Review, Vol. 11, No. 3, Fall 1982, pp 32-47. 0

(12) Naib, F. A., "An Application of Software Science to the Quantitative Mea-
surement of Code Quality", ACM SIGMETRICS Performance Evaluation Review,
Vol. 11, No. 3, Fall 1982, pp 101-128.

Bibliography 149

%. r e. r '. .... ..-.- *. \: -N.;4 .- , v.- V. .% %"~ .- %. '- %.~ 4
4,~.

'~p* %*"~'* *' J*.. - 1. h . *



(13) Schnurer, K. E., "Product Assurance Program Analyzer (P.A.P.A.) A Tool
for Program Complexity Evaluation (abstract only)", ACM SIGMETRICS Per-

formance Evaluation Review, Vol. 11, No. 3, Fall 1982, pp 73-74.

(14) Yourdon, Edward and L. L. Constantine, Structured Design: Fundamentals 9
of a Discipline of Computer Program and Systems Design, Prentice-Hall,

*% %

0!



MISSION
* Of

Rom Air Development Center
1?ADC ptan6 and execute,6 -tu.ea.'ch, devetopment, te6~t and
z~etec-ted acquizition p4ogwm in .6uppox~t o6 Command, ContAot
Cormanication6 and Intettigence (C31) activitiez. Technicat
and engineetinq 6u.ppotrt within aAea.6 o6 techncat competence
is p.'tovided .to ESP P'Logka 06ce,6 (P0.6) and otha' ESI)
etemen-t6. The p~incipat .technica2 n?-66ion aAea6 a~e
commun.cation6, etectAomagnetic guidance and contiot, 6u4
veitlance o q'Lound and aeospa.ce object&, ineUigenc data
cotection and handting, in~o~iation 6yz.tem .technotogy,
iono.6pheiutc p4opagation, zotid 4&ate .6cience,3, mic~Louwe
phy~,.c6 and etectAonic 4tiabitity, mainta.Lnabitty and
compatibitity.


